نتایج جستجو برای: loss minimization
تعداد نتایج: 475131 فیلتر نتایج به سال:
This paper presents a new online loss minimization for an induction motor drive. Among the many loss minimization algorithms (LMAs) for an induction motor, a particle swarm optimization (PSO) has the advantages of fast response and high accuracy. However, the performance of the PSO and other optimization algorithms depend on the accuracy of the modeling of the motor drive and losses. In the dev...
In this paper, we argue that replacing the expectation of the loss in statistical decision theory with the median of the loss leads to a viable and useful alternative to conventional risk minimization particularly because it can be used with heavy tailed distributions. We investigate three possible definitions for such medloss estimators and derive examples of them in several standard settings....
We consider the problem of minimizing the shortfall risk when the aim is to hedge a contingent claim in a binomial market model and the initial capital is insufficient for a perfect hedge. This problem has been solved under complete information on the underlying model in [3]. We present two possible solutions to the same problem in the case of incomplete information, namely when the underlying ...
Stochastic Dual Coordinate Ascent is a popular method for solving regularized loss minimization for the case of convex losses. We describe variants of SDCA that do not require explicit regularization and do not rely on duality. We prove linear convergence rates even if individual loss functions are non-convex, as long as the expected loss is strongly convex.
Stochastic Dual Coordinate Ascent is a popular method for solving regularized loss minimization for the case of convex losses. In this paper we show how a variant of SDCA can be applied for non-convex losses. We prove linear convergence rate even if individual loss functions are non-convex as long as the expected loss is convex.
This paper presents an efficient algorithm to solve Lp-norm minimization problem for under-determined speech separation; that is, for the case that there are more sound sources than microphones. We employ an auxiliary function method in order to derive update rules under the assumption that the amplitude of each sound source follows generalized Gaussian distribution. Experiments reveal that our...
Impact of Storage Devices with Renewable Integrated Distribution Network for Power Loss Minimization
The intermittent behaviour of renewable energy generation has become an essential issue for power deficiency in the distribution network. high penetration wind and solar became primary task optimal size storage to support mismatch. In present work, impact device with (DGs) have been determined a integrated system loss minimization. main contribution this paper is: (i) location DGs battery are o...
Stochastic Gradient Descent (SGD) has become popular for solving large scale supervised machine learning optimization problems such as SVM, due to their strong theoretical guarantees. While the closely related Dual Coordinate Ascent (DCA) method has been implemented in various software packages, it has so far lacked good convergence analysis. This paper presents a new analysis of Stochastic Dua...
We introduce a proximal version of the stochastic dual coordinate ascent method and show how to accelerate the method using an inner-outer iteration procedure. We analyze the runtime of the framework and obtain rates that improve state-of-the-art results for various key machine learning optimization problems including SVM, logistic regression, ridge regression, Lasso, and multiclass SVM. Experi...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید