نتایج جستجو برای: lambda modified wiener index
تعداد نتایج: 666561 فیلتر نتایج به سال:
Let d(G, k) be the number of pairs of vertices of a graph G that are at distance k, λ a real number, and Wλ(G) = ∑ k≥1 d(G, k)kλ. Wλ(G) is called the Wiener-type invariant of G associated to real number λ. In this paper, the Wiener-type invariants of some graph operations are computed. As immediate consequences, the formulae for reciprocal Wiener index, Harary index, hyperWiener index and Tratc...
the wiener index $w(g)$ of a connected graph $g$ is defined as $w(g)=sum_{u,vin v(g)}d_g(u,v)$ where $d_g(u,v)$ is the distance between the vertices $u$ and $v$ of $g$. for $ssubseteq v(g)$, the {it steiner distance/} $d(s)$ of the vertices of $s$ is the minimum size of a connected subgraph of $g$ whose vertex set is $s$. the {it $k$-th steiner wiener index/} $sw_k(g)$ of $g$ ...
let $g$ be a molecular graph with vertex set $v(g)$, $d_g(u, v)$ the topological distance between vertices $u$ and $v$ in $g$. the hosoya polynomial $h(g, x)$ of $g$ is a polynomial $sumlimits_{{u, v}subseteq v(g)}x^{d_g(u, v)}$ in variable $x$. in this paper, we obtain an explicit analytical expression for the expected value of the hosoya polynomial of a random benzenoid chain with $n$ hexagon...
Let $G$ be a molecular graph with vertex set $V(G)$, $d_G(u, v)$ the topological distance between vertices $u$ and $v$ in $G$. The Hosoya polynomial $H(G, x)$ of $G$ is a polynomial $sumlimits_{{u, v}subseteq V(G)}x^{d_G(u, v)}$ in variable $x$. In this paper, we obtain an explicit analytical expression for the expected value of the Hosoya polynomial of a random benzenoid chain with $n$ hexagon...
The Wiener index, denoted byW (G), of a connected graph G is the sum of all pairwise distances of vertices of the graph, that is, W (G) = 1 2 ∑ u,v∈V (G) d(u, v). In this paper, we obtain the Wiener index of the tensor product of a path and a cycle.
The Wiener index of a graph G is defined to be 2 , ( ) ( , ), u V G d u ∈ ∑ X X where d(u, X) is the distance between the vertices u and X in G. In this paper, we obtain an explicit expression for the Wiener index of an odd graph.
The Wiener index, defined as the total sum of distances in a graph, is one of the most popular graph-theoretical indices. Its average value has been determined for several classes of trees, giving an asymptotics of the form Kn5/2 for some K. In this note, it is shown how the method can be extended to trees with restricted degrees. Particular emphasis is placed on chemical trees – trees with max...
Abstract The n-th order Wiener index of a molecular graph G was put forward by Estrada et al. [New J. Chem. 22 (1998) 819] as ( ) 1 ( , ) n n x W H G x where ( , ) H G x is the Hosoya polynomial. Recently Brückler et al. [Chem. Phys. Lett. 503 (2011) 336] considered a related graph invariant, ( ) 1 1 (1/ !) ( ( , )) / n n n n x W n d x H G x d x . For n=1, both W and W reduce to the ordinary W...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید