نتایج جستجو برای: kcnq1
تعداد نتایج: 1121 فیلتر نتایج به سال:
BACKGROUND A 5-year-old, healthy English Springer Spaniel died suddenly 4 months after delivering a litter of 7 puppies. Within 4 months of the dam's death, 3 offspring also died suddenly. HYPOTHESIS Abnormal cardiac repolarization, caused by an inherited long QT syndrome, is thought to be responsible for arrhythmias leading to sudden death in this family. ANIMALS Four remaining dogs from t...
The KCNQ1 rs2237892 C→T gene polymorphism is reportedly associated with T2DM susceptibility, but various studies show conflicting results. To explore this association in the Asian population, a meta-analysis of 15,736 patients from 10 individual studies was performed. The pooled odds ratios (ORs) and their 95% confidence intervals (CIs) were evaluated using random-effect or fixed-effect models....
Sphingomyelin synthase (SMS) catalyzes the conversion of phosphatidylcholine and ceramide to sphingomyelin and diacylglycerol. We previously showed that SMS1 deficiency leads to a reduction in expression of the K(+) channel KCNQ1 in the inner ear (Lu MH, Takemoto M, Watanabe K, Luo H, Nishimura M, Yano M, Tomimoto H, Okazaki T, Oike Y, and Song WJ. J Physiol 590: 4029-4044, 2012), causing heari...
The KCNQ1-G589D gene mutation, associated with a long-QT syndrome, has been shown to disrupt yotiao-mediated targeting of protein kinase A and protein phosphatase-1 to the I(Ks) channel. To investigate how this defect may lead to ventricular arrhythmia during sympathetic stimulation, we use integrative computational models of beta-adrenergic signaling, myocyte excitation-contraction coupling, a...
The voltage-gated K+ channel KVLQT1 is essential for the repolarization phase of the cardiac action potential and for K+ homeostasis in the inner ear. Mutations in the human KCNQ1 gene encoding the alpha subunit of the KVLQT1 channel cause the long-QT syndrome (LQTS). The autosomal dominant form of this cardiac disease, the Romano-Ward syndrome, is characterized by a prolongation of the QT inte...
The Jervell and Lange-Nielsen syndrome (JLNS) is an autosomal recessive syndrome characterized by congenital deafness and cardiac phenotype (QT prolongation, ventricular arrhythmias, and sudden death). JLNS has been shown to occur due to homozygous mutation in KCNQ1 or KCNE1. There have been a few clinical case reports on JLNS in Korea; however, these were not confirmed by a genetic study. We i...
Voltage-gated ion channels generate electrical currents that control muscle contraction, encode neuronal information, and trigger hormonal release. Tissue-specific expression of accessory (β) subunits causes these channels to generate currents with distinct properties. In the heart, KCNQ1 voltage-gated potassium channels coassemble with KCNE1 β-subunits to generate the IKs current (Barhanin et ...
Background: Long QT syndrome (LQTS) is characterized by the prolongation of QT interval, which results in syncope and sudden cardiac death in young people. KCNQ1 is the most common gene responsible for this syndrome. Methods: Molecular investigation was performed by DNA Sanger sequencing in Iranian families with a history of syncope. In silico examinations were performed for predicting the path...
Inherited long QT syndrome is most frequently associated with mutations in KCNQ1, which encodes the primary subunit of a potassium channel. Patients with mutations in KCNQ1 may show only the cardiac defect (Romano-Ward syndrome or RWS) or may also have severe deafness (Jervell and Lange-Nielsen syndrome or JLNS). Targeted disruption of mouse Kcnq1 models JLNS in that mice are deaf and show abno...
The KCNE1 auxiliary subunit coassembles with the Kv7.1 channel and modulates its properties to generate the cardiac I(Ks) current. Recent biophysical evidence suggests that KCNE1 interacts with the voltage-sensing domain (VSD) of Kv7.1. To investigate the mechanism of how KCNE1 affects the VSD to alter the voltage dependence of channel activation, we perturbed the VSD of Kv7.1 by mutagenesis an...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید