نتایج جستجو برای: kavraisky and jordan
تعداد نتایج: 16830787 فیلتر نتایج به سال:
Background: In Jordan, there are high rates of breast cancer (BC). It is increasing at a rate of 4% per year. BC is the most common of all cancers in Jordan and is the leading cause of cancer deaths among Jordanian women. Objective: The purpose of this qualitative pilot study was to explore beliefs about participating in breast cancer screening (BCS) among women in Jordan and to identify cultur...
Let A be an algebra and let X be an A-bimodule. A C−linear mapping d : A → X is called a generalized Jordan derivation if there exists a Jordan derivation (in the usual sense) δ : A → X such that d(a) = ad(a) + δ(a)a for all a ∈ A. The main purpose of this paper to prove the Hyers-Ulam-Rassias stability and superstability of the generalized Jordan derivations.
is the geometric multiplicity of λk which is also the number of Jordan blocks corresponding to λk . • The orders of the Jordan Blocks of λk must sum to the algebraic multiplicity of λk . • The number of Jordan blocks corresponding to an eigenvalue λk is its geometric multiplicity. • The matrix A is diagonalizable if and only if, for any eigenvalue λ of A , its geometric and algebraic multiplici...
Given an affine subspace of square matrices, we consider the problem of minimizing the spectral abscissa (the largest real part of an eigenvalue). We give an example whose optimal solution has Jordan form consisting of a single Jordan block, and we show, using nonlipschitz variational analysis, that this behaviour persists under arbitrary small perturbations to the example. Thus although matric...
We apply Shubin’s theory of global symbol classes Γρ to the Born-Jordan pseudodifferential calculus we have previously developed. This approach has many conceptual advantages and makes the relationship between the conflicting Born-Jordan and Weyl quantization methods much more limpid. We give, in particular, precise asymptotic expansions of symbols allowing us to pass from Born-Jordan quantizat...
The relationship between the Jordan forms of the matrix products AB and BA for some given A and B was first described by Harley Flanders in 1951. Their non-zero eigenvalues and non-singular Jordan structures are the same, but their singular Jordan block sizes can differ by 1. We present an elementary proof that owes its simplicity to a novel use of the Weyr characteristic.
The relationship between the Jordan forms of the matrix products AB and BA for some given A and B was first described by Harley Flanders in 1951. Their non-zero eigenvalues and non-singular Jordan structures are the same, but their singular Jordan block sizes can differ by 1. We present an elementary proof that owes its simplicity to a novel use of the Weyr characteristic.
A positive map between Euclidean Jordan algebras is a (symmetric cone) order preserving linear map. We show that the norm of such a map is attained at the unit element, thus obtaining an analog of the operator/matrix theoretic Russo-Dye theorem. A doubly stochastic map between Euclidean Jordan algebras is a positive, unital, and trace preserving map. We relate such maps to Jordan algebra automo...
In this paper we shall study the multipliers on Banach algebras and We prove some results concerning Arens regularity and amenability of the Banach algebra M(A) of all multipliers on a given Banach algebra A. We also show that, under special hypotheses, each Jordan multiplier on a Banach algebra without order is a multiplier. Finally, we present some applications of m...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید