نتایج جستجو برای: k means method

تعداد نتایج: 2217835  

Journal: :CoRR 2012
Mikhail V. Kharinov

The paper presents a formula for the reclassification of multidimensional data points (columns of real numbers, "objects", "vectors", etc.). This formula describes the change in the total squared error caused by reclassification of data points from one cluster into another and prompts the way to calculate the sequence of optimal partitions, which are characterized by a minimum value of the tota...

2006
David Arthur Sergei Vassilvitskii

The k-means method is an old but popular clustering algorithm known for its speed and simplicity. Until recently, however, no meaningful theoretical bounds were known on its running time. In this paper, we demonstrate that the worst-case running time of k-means is superpolynomial by improving the best known lower bound from Ω(n) iterations to 2 √ . To complement this lower bound, we show a smoo...

2012
Pushpa .R

Image segmentation is used to recognizing some objects or something that is more meaningful and easier to analyze In this paper we are focus on the the K means clustering for segmentation of the image. K-means clustering is the most widely used clustering algorithm to position the radial basis function (RBF) centres. Its simplicity and ability to perform on-line clustering may inspire this choi...

Journal: :CoRR 2013
P. Ashok G. M. Kadhar Nawaz E. Elayaraja V. Vadivel

Clustering is a separation of data into groups of similar objects. Every group called cluster consists of objects that are similar to one another and dissimilar to objects of other groups. In this paper, the K-Means algorithm is implemented by three distance functions and to identify the optimal distance function for clustering methods. The proposed K-Means algorithm is compared with K-Means, S...

2016
Marcin PIETRZYKOWSKI Marcin PLUCIŃSKI

Mini-model method (MM-method) is an instance-based learning algorithm similarly as the k-nearest neighbor method, GRNN network or RBF network but its idea is different. MM operates only on data from the local neighborhood of a query. The paper presents new version of the MM-method which is based on k-means clustering algorithm. The domain of the model is calculated using k-means algorithm. Clus...

2011
DAVID ARTHUR

Clustering is a fundamental problem in computer science with applications ranging from biology to information retrieval and data compression. In a clustering problem, a set of objects, usually represented as points in a high-dimensional space R, is to be partitioned such that objects in the same group share similar properties. The k-means method is a traditional clustering algorithm, originally...

2003
Nandita Das

Hedge fund databases vary as to the type of funds to include and in their classification scheme. Investment strategy and/or investment style are the basis for classification. Considerable variation is observed in the definitions, return calculation methodologies, and assumptions. There exists a myriad of classifications, some overlapping and some mutually exclusive. There is a need for an ‘alte...

Journal: :CoRR 2015
Qin Zhang

In this paper we give a first set of communication lower bounds for distributed clustering problems, in particular, for k-center, k-median and k-means. When the input is distributed across a large number of machines and the number of clusters k is small, our lower bounds match the current best upper bounds up to a logarithmic factor. We have designed a new composition framework in our proofs fo...

Journal: :IEICE Electronic Express 2009
Taehoon Lee Seung Jean Kim Eui-Young Chung Sungroh Yoon

We propose a new clustering algorithm based upon the maximin correlation analysis (MCA), a learning technique that can minimize the maximum misclassification risk. The proposed algorithm resembles conventional partition clustering algorithms such as k-means in that data objects are partitioned into k disjoint partitions. On the other hand, the proposed approach is unique in that an MCA-based ap...

2009
Bodo Manthey Heiko Röglin

The k-means method is a widely used clustering algorithm. One of its distinguished features is its speed in practice. Its worst-case running-time, however, is exponential, leaving a gap between practical and theoretical performance. Arthur and Vassilvitskii [3] aimed at closing this gap, and they proved a bound of poly(nk, σ−1) on the smoothed running-time of the k-means method, where n is the ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید