نتایج جستجو برای: ito
تعداد نتایج: 5384 فیلتر نتایج به سال:
Dye-sensitized solar cells (DSSCs) show promise as a cheaper alternative to silicon-based photovoltaics for specialized applications, provided conversion efficiency can be maximized and production costs minimized. This study demonstrates that arrays of nanowires can be formed by wet-chemical methods for use as three-dimensional (3D) electrodes in DSSCs, thereby improving photoelectric conversio...
Indium tin oxide (ITO) is a well-known n-type degenerate semiconductor with a wide variety of electronic and optoelectronic applications. Herein ITO is utilized as a photocathode material in p-type dye-sensitized solar cells in place of the commonly applied and highly colored nickel oxide (NiO) semiconductor. The application of mesoporous ITO photocathodes, [Fe(acac)3] as a redox mediator and a...
In this paper, we report a buffering method of improving the quality of ITO thin ®lms on glass by r.f. magnetron sputtering. By applying a ZnO buffer before the ITO deposition in the same run of sputtering, ITO ®lms showed single (111)-oriented highly textured structure, while ITO ®lms showed mixed-oriented polycrystalline structure on bare glass. A design of experiment was taken out to minimiz...
Transparent conductive indium tin oxide thin films with thickness around 200 nm were deposited on glass substrates by pulsed laser deposition technology. The microstructure and the electrical and optical properties of the ITO films deposited under different oxygen pressures and substrate temperatures were systematically investigated. Distinct different x-ray diffraction patterns revealed that t...
Zhiguo Meng H ua jun P eng C huny a W u C hengfeng Q iu K uen K uen L i Ma n W ong H oi S ing K w ok Abstract — Direct deposition of indium tin oxide (ITO) thin film on color filters is of practical use in the fabrication of state-of-the-art flat-panel displays. Room -tem perature dc m agnetron sputtering of thin-film ITO and issues related to the integration of ITO-on-glass panels containing m...
We investigated the electrical contact characteristics of indium tin oxide (ITO)/doped hydrogenated amorphous silicon (a-Si:H) junctions. For efficient collection of photo-generated carriers, photovoltaic and photodetector devices require good ohmic contacts with transparent electrodes. The amorphous-Si thin films were sputter deposited on ITO coated glass substrates. As-deposited p-type a-Si:H...
In this work new transparent conductive films that had a sandwich structure composed of ITO/metal/ITO multilayer films were prepared by reactive thermal evaporation technique on glass substrates without intentional substrate heating. Ag, Au and Cu thin films have been used as intermediate metal layer. The thickness of each layer in the ITO/metal/ITO films was kept constant at 50nm/10nm/40nm. Th...
Indium tin oxide (ITO) particle coatings are known for high transparency in the visible, good conductive properties and near-infrared absorption. These properties depend on ITO particle's stoichiometric composition, defects and size. Here we present a method to gradually change ITO particle's optical properties by a simple and controlled laser irradiation process. The defined irradiation proces...
Advances in opto-electronics are often led by discovery and development of materials featuring unique properties. Recently, thematerial class of transparent conductive oxides (TCO) has attracted attention for active photonic devices on-chip. In particular, indium tin oxide (ITO) is found to have refractive index changes on the order of unity. This property makes it possible to achieve electroop...
An In₂O₃/ITO thin film thermocouple was prepared via screen printing. Glass additives were added to improve the sintering process and to increase the density of the In₂O₃/ITO films. The surface and cross-sectional images indicate that both the grain size and densification of the ITO and In₂O₃ films increased with the increase in annealing time. The thermoelectric voltage of the In₂O₃/ITO thermo...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید