نتایج جستجو برای: inertial navigation system

تعداد نتایج: 2269767  

An accurate calibration of inertial measurement unit errors is increasingly important as the inertial navigation system requirements become more stringent. Developing calibration methods that use as less as possible of IMU signals has 6-DOF gimballed IMU in space-stabilized mode is presented. It is considered as held stationary in the test location incorporating 15 di...

1995
Jorge Lobo Paulo Lucas Jorge Dias A. Traça de Almeida

This paper describes a prototype of an inertial navigation system for use in mobile land vehicles, such as cars or mobile robots. The complete system is composed by sensors, their mechanical mount and cabling, these connect to a PC card with local processing and memory, based on a Intel 80C196KC microcontroller. The sensors used were a piezoelectric vibrating gyroscope, two silicon acceleromete...

Journal: :J. Field Robotics 2004
Stevica Graovac

The possibility of fusion of navigation data obtained by two separate navigation systems (strapdown inertial one and dynamic vision based one) is considered in this paper. The attention is primarily focused on principles of validation of separate estimates before their use in a combined algorithm. The inertial navigation system (INS) based on sensors of medium level quality has been analyzed on...

2016
Timo Hinzmann Thomas Schneider Marcin Dymczyk Andreas Schaffner Simon Lynen Roland Siegwart Igor Gilitschenski

Precise real-time information about the position and orientation of robotic platforms as well as locally consistent point-clouds are essential for control, navigation, and obstacle avoidance. For years, GPS has been the central source of navigational information in airborne applications, yet as we aim for robotic operations close to the terrain and urban environments, alternatives to GPS need t...

2012
Paul Williams Michael Crump

The drive towards utilizing small, cheap, autonomous aerial vehicles for military operations means that navigation systems that are robust to GPS denial must be employed. The simplest option available is to increase the accuracy of the inertial measurement unit (IMU), but this can substantially increase the price per operational unit. This paper presents an overview of the All-Source Navigation...

2013
Tianmiao Wang Chaolei Wang Jianhong Liang Yang Chen Yicheng Zhang

This paper presents a vision-aided inertial navigation system for small unmanned aerial vehicles (UAVs) in GPS-denied environments. During visual estimation, image features in consecutive frames are detected and matched to estimate the motion of the vehicle with a homography-based approach. Afterwards, the visual measurement is fused with the output of an inertial measurement unit (IMU) by an i...

2003
Paul G. Savage

This series of two papers (Parts 1 and 2) provides a rigorous comprehensive approach to the design of the principal software algorithmsutilized in modern-day strapdown inertial navigation systems: integration of angular rate into attitude, acceleration transformation/integration into velocity, and integration of velocity into position. The algorithmsare structured utilizing the two-speed updati...

2013
Dimin Wu Zhengzhi Wang

The rigid body motion can be represented by a motor in geometric algebra, and the motor can be rewritten as a trinometric function of the screw blade. In this paper, a screw blade strapdown inertial navigation system (SDINS) algorithm is developed. The trigonometric function form of the motor is derived and utilized to deduce the Bortz equation of the screw blade. The screw blade SDINS algorith...

2006
Dmitry Nekrasovski

As information visualization tools are used to visualize datasets of increasing size, there is a growing need for techniques that facilitate efficient navigation. Pan and zoom navigation enables users to display areas of interest at different resolutions. Focus+context techniques aim to overcome the drawbacks of pan and zoom by dynamically integrating areas of interest and context regions. To d...

2015
Estefania Munoz Diaz

Inertial navigation systems use dead-reckoning to estimate the pedestrian's position. There are two types of pedestrian dead-reckoning, the strapdown algorithm and the step-and-heading approach. Unlike the strapdown algorithm, which consists of the double integration of the three orthogonal accelerometer readings, the step-and-heading approach lacks the vertical displacement estimation. We prop...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید