In this paper, we determine the $L^p(\mathbb{R})\times L^q(\mathbb{R})\rightarrow L^r(\mathbb{R})$ boundedness of bilinear Hilbert transform $H_{\gamma}(f,g)$ along a convex curve $\gamma$ $$H_{\gamma}(f,g)(x):=\mathrm{p.\,v.}\int_{-\infty}^{\infty}f(x-t)g(x-\gamma(t)) \,\frac{\textrm{d}t}{t},$$ where $p$, $q$, and $r$ satisfy $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$, $r>\frac{1}{2}$, $p>1$, $q>1$...