نتایج جستجو برای: heat and advection diffusion equations

تعداد نتایج: 16955519  

2012
Samet Y. Kadioglu Dana A. Knoll

Here, we present a truly second order time accurate self-consistent IMEX (IMplicit/EXplicit) method for solving the Euler equations that posses strong nonlinear heat conduction and very stiff source terms (Radiation hydrodynamics). This study essentially summarizes our previous and current research related to this subject (Kadioglu & Knoll, 2010; 2011; Kadioglu, Knoll & Lowrie, 2010; Kadioglu, ...

2008
Kaixin Wang Hong Wang Mohamed Al-Lawatia Hongxing Rui

We develop a family of characteristic discontinuous Galerkin methods for transient advection-diffusion equations, including the characteristic NIPG, OBB, IIPG, and SIPG schemes. The derived schemes possess combined advantages of EulerianLagrangian methods and discontinuous Galerkin methods. An optimal-order error estimate in the L2 norm and a superconvergence estimate in a weighted energy norm ...

2009
Masayuki Yano David L. Darmofal

A high-order Galerkin Least-Squares (GLS) finite element discretization is combined with a Balancing Domain Decomposition by Constraints (BDDC) preconditioner and inexact local solvers to provide an efficient solution technique for large-scale, convection-dominated problems. The algorithm is applied to the linear system arising from the discretization of the two-dimensional advection-diffusion ...

Journal: :The European physical journal. E, Soft matter 2010
M Mendoza F K Wittel H J Herrmann

We propose a description for transient penetration simulations of miscible and immiscible fluid mixtures into anisotropic porous media, using the lattice Boltzmann (LB) method. Our model incorporates hydrodynamic flow, advection-diffusion, surface tension, and the possibility for global and local viscosity variations to consider various types of hardening fluids. The miscible mixture consists o...

Journal: :J. Computational Applied Mathematics 2017
G. L. Kooij Mike A. Botchev Bernard J. Geurts

A parallel time integration method for nonlinear partial differential equations is proposed. It is based on a new implementation of the Paraexp method for linear partial differential equations (PDEs) employing a block Krylov subspace method. For nonlinear PDEs the algorithm is based on our Paraexp implementation within a waveform relaxation. The initial value problem is solved iteratively on a ...

Journal: :computational methods for differential equations 0
reza khoshsiar ghaziani shahrekord university mojtaba fardi shahrekord university mehdi ghasemi shahrekord university

this study develops and analyzes preconditioned krylov subspace methods to solve linear systemsarising from discretization of the time-independent space-fractional models. first, we apply shifted grunwald formulas to obtain a stable finite difference approximation to fractional advection-diffusion equations. then, we employee two preconditioned iterative methods, namely, the preconditioned gene...

2012
Sergei Fedotov Steven Falconer

Subdiffusive fractional equations are not structurally stable with respect to spatial perturbations to the anomalous exponent (Phys. Rev. E 85, 031132 (2012)). The question arises of applicability of these fractional equations to model real world phenomena. To rectify this problem we propose the inclusion of the random death process into the random walk scheme from which we arrive at the modifi...

2012
H. W. Mckenzie Y. Jin J. Jacobsen M. A. Lewis

Water resources worldwide require management to meet industrial, agricultural, and urban consumption needs. Management actions change the natural flow regime, which impacts the river ecosystem. Water managers are tasked with meeting water needs while mitigating ecosystem impacts. We develop process-oriented advection-diffusion-reaction equations that couple hydraulic flow to population growth, ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید