Let X be a linear space over K∈{R,C}, Y real or complex Banach and f:Xn→Y. With some fixed aji,Ci1…in∈K (j∈{1,…,n}, i,ik∈{1,2}, k∈{1,…,n}), we study, using the direct point methods, stability general of equation f(a11x11+a12x12,…,an1xn1+an2xn2)=∑1≤i1,…,in≤2Ci1…inf(x1i1,…,xnin), for all xjij∈X (j∈{1,…,n},ij∈{1,2}). Our paper generalizes several known results, among others concerning equations wi...