نتایج جستجو برای: fuzzy vector space

تعداد نتایج: 744641  

1998
Jean-François Hébert Marc Parizeau Nadia Ghazzali

This paper introduces a new fuzzy representation for isolated character description. This representation maps a character from its original sequence of 2D coordinates into a fuzzy vector space that can thereafter serve as input to any artificial neural network classifier. Recognition experiments on isolated digits extracted from the UNIPEN database are then conducted to evaluate the performance...

2012
C. de Runz E. Desjardin H. Akdag

The article deals with imprecise geographical entities modelled according to the fuzzy set theory for both spatial and quantitative information. It presents the issues of fusion of fuzzy geographical objects according to its storing modes (raster, vector) in a mutualised geographical information system (GIS). We study the aggregation of imprecise spatial entities and its impact in the imprecise...

Journal: :iranian journal of fuzzy systems 2011
abdelaziz amroune bijan davvaz

the starting point of this paper is given by priestley’s papers, where a theory of representation of distributive lattices is presented. the purpose of this paper is to develop a representation theory of fuzzy distributive lattices in the finite case. in this way, some results of priestley’s papers are extended. in the main theorem, we show that the category of finite fuzzy priestley space...

The notion of generalized locally bounded $I$-topological vectorspaces is introduced. Some of their important properties arestudied. The relationship between this kind of spaces and thelocally bounded $I$-topological vector spaces introduced by Wu andFang [Boundedness and locally bounded fuzzy topological vectorspaces, Fuzzy Math. 5 (4) (1985) 87$-$94] is discussed. Moreover, wealso use the fam...

D. Qiu H. Li R. Dong

For a class of fuzzy metric spaces (in the sense of George and Veeramani) with an H-type t-norm,  we present a method to construct a metric on a  fuzzy metric space. The induced metric space shares many important properties with the given fuzzy metric space.  Specifically, they generate the same topology, and have the same completeness. Our results can give the constructive proofs to some probl...

Journal: :iranian journal of fuzzy systems 2005
reza ameri

in this note we first redefine the notion of a fuzzy hypervectorspace (see [1]) and then introduce some further concepts of fuzzy hypervectorspaces, such as fuzzy convex and balance fuzzy subsets in fuzzy hypervectorspaces over valued fields. finally, we briefly discuss on the convex (balanced)hull of a given fuzzy set of a hypervector space.

Abbas Hasankhani, Akbar Nazari, Morteza Saheli

In the present paper we define the notion of fuzzy inner productand study the properties of the corresponding fuzzy norm. In particular, it isshown that the Cauchy-Schwarz inequality holds. Moreover, it is proved thatevery such fuzzy inner product space can be imbedded in a complete one andthat every subspace of a fuzzy Hilbert space has a complementary subspace.Finally, the notions of fuzzy bo...

M. Saheli

In the present paper, we investigate a connection between two fuzzy inner product one of which arises from Felbin's fuzzy norm and the other is based on Bag and Samanta's fuzzy norm. Also we show that, considering a fuzzy inner product space, how one can construct another kind of fuzzy inner product on this space.

2008
M. SEETHA I. V. MURALIKRISHNA B. L. DEEKSHATULU B. L. MALLESWARI P. HEGDE

In digital image classification the conventional statistical approaches for image classification use only the gray values. Different advanced techniques in image classification like Artificial Neural Networks (ANN), Support Vector Machines (SVM), Fuzzy measures, Genetic Algorithms (GA), Fuzzy support Vector Machines (FSVM) and Genetic Algorithms with Neural Networks are being developed for imag...

2003
Aysegül Uçar Yakup Demir Cüneyt Güzelis

We have observed that the support vector clustering method proposed by Asa Ben Hur, David Horn, Hava T. Siegelmann, Vladimir Vapnik, (Journal of Machine Learning Research, (2001), 125–137) can provide cluster boundaries of arbitrary shape based on a Gaussian kernel abstaining from explicit calculations in the high-dimensional feature space. This allows us to apply the method to the training set...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->