This paper brings together Dana Scott’s measure-based semantics for the propositional modal logic S4, and recent work in Dynamic Topological Logic. In a series of recent talks, Scott showed that the language of S4 can be interpreted in the Lebesgue measure algebra, M, or algebra of Borel subsets of the real interval, [0, 1], modulo sets of measure zero. Conjunctions, disjunctions and negations ...