نتایج جستجو برای: fractional order chebyshev functions
تعداد نتایج: 1390544 فیلتر نتایج به سال:
Here, in this article, we investigate the solution of a general family fractional-order differential equations by using spectral Tau method sense Liouville–Caputo type fractional derivatives with linear functional argument. We use Chebyshev polynomials second kind to develop recurrence relation subjected certain initial condition. The behavior approximate series solutions are tabulated and plot...
*Correspondence: [email protected] Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran Abstract In this paper, we solve a time-space fractional diffusion equation. Our methods are based on normalized Bernstein polynomials. For the space domain, we use a set of normalized Bernstein polynomials and for the time domain, which is a semi-infinite domain, ...
Effects of the uniform transverse magnetic field on the transient free convective flows of a nanofluid with generalized thermal transport between two vertical parallel plates have been analyzed. The fluid temperature is described by a time-fractional differential equation with Caputo derivatives. Closed form of the temperature field is obtained by using the Laplace transform and fractional deri...
In this paper, we propose the spectral collocation method based on radial basis functions to solve the fractional Bagley-Torvik equation under uncertainty, in the fuzzy Caputo's H-differentiability sense with order ($1< nu < 2$). We define the fuzzy Caputo's H-differentiability sense with order $nu$ ($1< nu < 2$), and employ the collocation RBF method for upper and lower approximate solutions. ...
In this paper, a modern method is presented to solve a class of fractional optimal control problems (FOCPs) indirectly. First, the necessary optimality conditions for the FOCP are obtained in the form of two fractional differential equations (FDEs). Then, the unknown functions are approximated by the hybrid functions, including Bernoulli polynomials and Block-pulse functions based o...
The computation of spectral expansion coefficients is an important aspect in the implementation of spectral methods. In this paper, we explore two strategies for computing the coefficients of polynomial expansions of analytic functions, including Chebyshev, Legendre, ultraspherical and Jacobi coefficients, in the complex plane. The first strategy maximizes computational efficiency and results i...
Abstract This research apparatuses an approximate spectral method for the nonlinear time-fractional partial integro-differential equation with a weakly singular kernel (TFPIDE). The main idea of this approach is to set up new Hilbert space that satisfies initial and boundary conditions. collocation applied obtain precise numerical approximation using basis functions based on shifted first-kind ...
We analyze whether a given set of analytic functions is an Extended Chebyshev system. This family of functions appears studying the number of limit cycles bifurcating from some nonlinear vector field in the plane. Our approach is mainly based on the so called Derivation-Division algorithm. We prove that under some natural hypotheses our family is an Extended Chebyshev system and when some of th...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید