نتایج جستجو برای: forecasting error
تعداد نتایج: 292207 فیلتر نتایج به سال:
Loss aversion occurs because people expect losses to have greater hedonic impact than gains of equal magnitude. In two studies, people predicted that losses in a gambling task would have greater hedonic impact than would gains of equal magnitude, but when people actually gambled, losses did not have as much of an emotional impact as they predicted. People overestimated the hedonic impact of los...
چکیده ندارد.
Wind forecasting is critical in the wind power industry, yet forecasting errors often exist. In order to effectively correct the forecasting error, this study develops a weather adapted bias correction scheme on the basis of an average bias-correction method, which considers the deviation of estimated biases associated with the difference in weather type within each unit of the statistical samp...
In a competitive and dynamic market, financial institutions must forecast the proportion of mortgages that will become delinquent, default or prepay. This paper develops a novel forecasting model with nonstationary Markov chain and Grey forecasting, capable of predicting the likelihood of delinquency, default and prepayment. Home mortgage data, obtained by a major Taiwan financial institution f...
Time series of quarterly observations on Gross Domestic Product (GDP) is collected and used in this study. Forecasting results of ANNs are compared with those of the Autoregressive Integrated Moving Average (ARIMA) and regression as benchmark methods. Using Root Mean Square Error (RMSE), the empirical results show that ANN performs better than the traditional methods in forecasting GDP.
Abstract—Short-term probabilistic wind power forecasting can provide critical quantified uncertainty information of wind generation for power system operation and control. As the complicated characteristics of wind power prediction error, it would be difficult to develop a universal forecasting model dominating over other alternative models. Therefore, a novel multi-model combination (MMC) ap...
This paper proposes a hybrid methodology that exploits the unique strength of the seasonal autoregressive integrated moving average (SARIMA) model and the support vector machines (SVM) model in forecasting seasonal time series. The seasonal time series data of Taiwan’s machinery industry production values were used to examine the forecasting accuracy of the proposed hybrid model. The forecastin...
BACKGROUND Cases of hemorrhagic fever with renal syndrome (HFRS) are widely distributed in eastern Asia, especially in China, Russia, and Korea. It is proved to be a difficult task to eliminate HFRS completely because of the diverse animal reservoirs and effects of global warming. Reliable forecasting is useful for the prevention and control of HFRS. METHODS Two hybrid models, one composed of...
Accurate incidence forecasting of infectious disease is critical for early prevention and for better government strategic planning. In this paper, we present a comprehensive study of different forecasting methods based on the monthly incidence of typhoid fever. The seasonal autoregressive integrated moving average (SARIMA) model and three different models inspired by neural networks, namely, ba...
Time Series Forecasting (TSF) is an important tool to support decision making (e.g., planning production resources). Artificial Neural Networks (ANN) are innate candidates for TSF due to advantages such as nonlinear learning and noise tolerance. However, the search for the best model is a complex task that highly affects the forecasting performance. In this work, we propose two novel Evolutiona...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید