نتایج جستجو برای: ethylene epoxidation

تعداد نتایج: 30626  

2017
Rafiq Ahad Ting Zhou Dion Lepp K. Peter Pauls

BACKGROUND Contamination of agricultural commodities with multiple trichothecene mycotoxins, produced by toxigenic Fusarium species, is a food safety issue, which greatly affects grain production and marketing worldwide. Importantly, exposure to multiple trichothecenes may increase toxicity in animals due to their synergistic and/or additive effects. To address the problem this study aimed to a...

Journal: :Journal of inorganic biochemistry 2006
Yumi Suh Mi Sook Seo Kwan Mook Kim Youn Sang Kim Ho G Jang Takehiko Tosha Teizo Kitagawa Jinheung Kim Wonwoo Nam

Mononuclear nonheme oxoiron(IV) complexes bearing 15-membered macrocyclic ligands were generated from the reactions of their corresponding iron(II) complexes and iodosylbenzene (PhIO) in CH(3)CN. The oxoiron(IV) species were characterized with various spectroscopic techniques such as UV-vis spectrophotometer, electron paramagnetic resonance, electrospray ionization mass spectrometer, and resona...

Journal: :Journal of the American Chemical Society 2003
Marie-Laure Bocquet Angelos Michaelides David Loffreda Philippe Sautet Ali Alavi David A King

Reaction mechanisms and activation energies for the complete conversion of ethene to ethene epoxide on two recently characterized oxidized Ag{111} surfaces have been determined from density functional theory. On both surfaces, epoxidation proceeds through a two-step nonconcerted mechanism via an oxametallacycle intermediate. The key implications are that both surfaces are active and that epoxid...

Journal: :Chemical reviews 2007
Avelino Corma Sara Iborra Alexandra Velty

3.2.3. Hydroformylation 2467 3.2.4. Dimerization 2468 3.2.5. Oxidative Cleavage and Ozonolysis 2469 3.2.6. Metathesis 2470 4. Terpenes 2472 4.1. Pinene 2472 4.1.1. Isomerization: R-Pinene 2472 4.1.2. Epoxidation of R-Pinene 2475 4.1.3. Isomerization of R-Pinene Oxide 2477 4.1.4. Hydration of R-Pinene: R-Terpineol 2478 4.1.5. Dehydroisomerization 2479 4.2. Limonene 2480 4.2.1. Isomerization 2480...

1998
Jaana K. Karjalainen David C. Sherrington

Homogeneous linear poly(tartrate ester) ligands provide high chemical yields and enantiomeric excesses in the epoxidation of trans-hex-2-en-1-ol using Ti(OPr)4-tert-butyl hydroperoxide. Branched poly(tartrate ester) can be use as heterogeneous ligands in the epoxidation of trans-hex-2-en-1-ol using Ti(OPr)4-tert-butyl hydroperoxide. Removal and recovery of the polymer catalyst is a simple filtr...

2005
Albrecht Berkessel

The lecture summarized our recent work in the fields of (i) catalytic asymmetric epoxidation and cyclopropanation, (ii) C–C coupling reactions, and (iii) dynamic kinetic resolution (DKR). The first section describes the use of chiral Ru-porphyrins as catalysts for the asymmetric epoxidation and cyclopropanation of nonfunctionalized olefins, and of peptides and alkaloid-based phase-transfer cata...

2012
Emilia Abdulmalek Mahashanon Arumugam Mahiran Basri Mohd Basyaruddin Abdul Rahman

Herein, an efficient epoxidation of 1-nonene is described. In a simple epoxidation system, commercially available Novozym 435, an immobilized Candida antarctica lipase B, and hydrogen peroxide (H(2)O(2)) were utilized to facilitate the in situ oxidation of phenylacetic acid to the corresponding peroxy acid which then reacted with 1-nonene to give 1-nonene oxide with high yield and selectivity....

2013
Tim Danks Ian Hamerton

The catalysis by S, 1 0, IS,20-tetrakis(pentafluorophenyl)-21H,23H-porphyrin iron(III) chloride (F20 TPPFeCl) of alkene epoxidation by H20 2 has been investigated. Extensive catalyst decomposition was observed during the reaction. A kinetics and product yield analysis has shown that this decomposition does not occur via either the oxoperferryl intermediate (F 20 TPP·+)F e =0 or the oxoferryl in...

Journal: :Journal of the American Chemical Society 2002
Benjamin S Lane Matthew Vogt Victoria J DeRose Kevin Burgess

This paper describes a method, discovered and refined by parallel screening, for the epoxidation of alkenes. It uses hydrogen peroxide as the terminal oxidant, is promoted by catalytic amounts (1.0-0.1 mol %) of manganese(2+) salts, and must be performed using at least catalytic amounts of bicarbonate buffer. Peroxymonocarbonate, HCO(4)(-), forms in the reaction, but without manganese, minimal ...

Journal: : 2023

Being widely used, medicinal products based on vegetable oils require strict regulation and evaluation of quality attributes, determination shelf-life periods, monitoring storage conditions. The most common testing method for unsaturated compounds in is the iodine value determination, which has a range limitations. An alternative determining degree unsaturation epoxidation. aim study was to eva...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید