نتایج جستجو برای: error back propagation

تعداد نتایج: 497074  

Journal: :Complex Systems 1991
Wray L. Buntine Andreas S. Weigend

Connectionist feed-forward networks, t rained with backpropagat ion, can be used both for nonlinear regression and for (discrete one-of-C ) classification. This paper presents approximate Bayesian meth ods to statistical components of back-propagat ion: choosing a cost funct ion and penalty term (interpreted as a form of prior probability), pruning insignifican t weights, est imat ing the uncer...

2006
Ali Emrouznejad

Data Envelopment Analysis (DEA) is one of the most widely used methods in the measurement efficiency and productivity of Decision Making Units (DMUs). DEA for a large dataset with many inputs/outputs would require huge computer resources in terms of memory and CPU time. This paper introduces a neural network backpropagation Data Envelopment Analysis. Neural network requirements of computer memo...

A. Bolandgerami B. Asmar F. Nazari M. Karimi,

Crack identification is a very important issue in mechanical systems, because it is a damage that if develops may cause catastrophic failure. In the first part of this research, modal analysis of a multi-cracked variable cross-section beam is done using finite element method. Then, the obtained results are validated usingthe results of experimental modal analysis tests. In the next part, a nove...

Journal: :Applied optics 1992
Y Qiao D Psaltis

An anti-Hebbian local learning algorithm for two-layer optical neural networks is introduced. With this learning rule, the weight update for a certain connection depends only on the input and output of that connection and a global, scalar error signal. Therefore the backpropagation of error signals through the network, as required by the commonly used back error propagation algorithm, is avoide...

Mahmoud Reza Pishvaie, Najeh Alali Vahid Taghikhani

Production of highly viscous tar sand bitumen using Steam Assisted Gravity Drainage (SAGD) with a pair of horizontal wells has advantages over conventional steam flooding. This paper explores the use of Artificial Neural Networks (ANNs) as an alternative to the traditional SAGD simulation approach. Feed forward, multi-layered neural network meta-models are trained through the Back-...

Journal: :سنجش از دور و gis ایران 0
علی اکبر متکان دانشگاه شهید بهشتی علیرضا شکیبا دانشگاه شهید بهشتی امین حسینی اصل دانشگاه شهید بهشتی فردین رحیمی دهگلان دانشگاه شهید بهشتی

runoff is one of the major components of calculating water resource processes and is the main issue in hydrology. many concept models are used to predict the amount of runoff, which in most cases depend on topographical and hydrological data. conventional models are not appropriate for areas in which there is little hydrological data. changes in runoff are nonlinear, meaning it is time & space ...

Journal: :international journal of environmental research 2012
kh. ashrafi m. shafiepour l. ghasemi b. araabi

the objective of this paper is to develop an artificial neural network (ann) model which can beused to predict temperature rise due to climate change in regional scale. in the present work data recorded overyears 1985-2008 have been used at training and testing steps for ann model. the multilayer perceptron(mlp) network architecture is used for this purpose. three applied optimization methods a...

Journal: :IEEE Trans. Circuits Syst. Video Techn. 1999
Jong-Tzy Wang Pao-Chi Chang

Video sequences compressed by the current videocompression standards—such as MPEG-1/2 and H.261/H.263, which include motion compensation and variable-length coding—are very sensitive to channel disturbances. There exist many error-concealment techniques that can improve the video quality substantially. However, they generally do not prevent or terminate the error propagation. The forced intraup...

2011
Andrey Gavrilov Artem Lenskiy

In this paper we propose a novel bio-inspired model of a mobile robot navigation system. The novelty of our work consists in combining short term memory and online neural network learning using history of events stored in this memory. The neural network is trained with a modified error back propagation algorithm that utilizes reward and punishment principal while interacting with the environment.

The aim of this study was to estimate suspended sediment by the ANN model, DT with CART algorithm and different types of SRC, in ten stations from the Lorestan Province of Iran. The results showed that the accuracy of ANN with Levenberg-Marquardt back propagation algorithm is more than the two other models, especially in high discharges. Comparison of different intervals in models showed that r...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید