نتایج جستجو برای: distance based nearest better neighborhood

تعداد نتایج: 3479938  

Journal: :Physical review. E, Statistical, nonlinear, and soft matter physics 2007
Junfeng Sun Yi Zhao Tomomichi Nakamura Michael Small

Time-frequency analysis is performed for chaotic flow with a power spectrum estimator based on the phase-space neighborhood. The relation between the reference phase point and its nearest neighbors is demonstrated. The nearest neighbors, representing the state recurrences in the phase space reconstructed by time delay embedding, actually cover data segments with similar wave forms and thus poss...

2007
Liu Yang

In our previous comprehensive survey [41], we have categorized the disparate issues in distance metric learning. Within each of the four categories, we have summarized existing work, disclosed their essential connections, strengths and weaknesses. The first category is supervised distance metric learning, which contains supervised global distance metric learning, local adaptive supervised dista...

2013
Neeraj Sahu

This paper presents new approach Hesitant Fuzzy K-nearest neighbour (HFK-nn) based document classification and numerical results analysis. The proposed classification Hesitant Fuzzy K-nearest neighbour (HFKnn) approach is based on hesitant Fuzzy distance. In this paper we have used hesitant Fuzzy distance calculations for document classification results. The following steps are used for classif...

2012
Qiong Cao Yiming Ying Peng Li

The success of many machine learning algorithms (e.g. the nearest neighborhood classification and k-means clustering) depends on the representation of the data as elements in a metric space. Learning an appropriate distance metric from data is usually superior to the default Euclidean distance. In this paper, we revisit the original model proposed by Xing et al. [24] and propose a general formu...

2010
Bálint CSATÁRI Zoltán PREKOPCSÁK

In this paper, we present two novel class-based weighting methods for the Euclidean nearest neighbor algorithm and compare them with global weighting methods considering empirical results on a widely accepted time series classification benchmark dataset. Our methods provide higher accuracy than every global weighting in nearly half of the cases and they have better overall performance. We concl...

2018
Hossein Rajabzadeh Mansoor Zolghadri Jahromi Mohammad Sadegh Zare Mostafa Fakhrahmad

Distance metric learning is a successful way to enhance the performance of the nearest neighbor classifier. In most cases, however, the distribution of data does not obey a regular form and may change in different parts of the feature space. Regarding that, this paper proposes a novel local distance metric learning method, namely Local Mahalanobis Distance Learning (LMDL), in order to enhance t...

2007
Honggui Li Xingguo Li

Euclidean distance, Hausdorff distance and SSP distance are discussed, and SSP distance is used to improve Isomap algorithm. Two methods are put forward for improving Isomap algorithm. One is aligning input data of original Isomap algorithm, the other is modifying Isomap algorithm itself. SSP distance is used to search neighbors and compose neighborhood graph, and the plot for each dimension of...

Introduction: Having accurate and up-to-date information on the status of land use and land cover change is a key point to protecting natural resources, sustainable agriculture management and urban development. Preparing the land cover and land use maps with traditional methods is usually time and cost consuming. Nowadays satellite imagery provides the possibility to prepare these maps in less ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید