نتایج جستجو برای: difference equations
تعداد نتایج: 642632 فیلتر نتایج به سال:
In this paper, we implement the radial basis functions for solving a classical type of time-fractional telegraph equation defined by Caputo sense for ð1oαr2Þ. The presented method which is coupled of the radial basis functions and finite difference scheme achieves the semi-discrete solution. We investigate the stability, convergence and theoretical analysis of the scheme which verify the validi...
Two new finite difference schemes based on the method of characteristics are presented for convection-diffusion problems. Both of the schemes are of second order in time, and the matrices of the derived systems of linear equations are symmetric. No numerical integration is required for them. The one is of first order in space and the other is of second order. For the former scheme, an optimal e...
A fast finite difference method is proposed to solve the incompressible Navier-Stokes equations defined on a general domain. The method is based on the vorticity stream-function formulation and a fast Poisson solver defined on a general domain using the immersed interface method. The key to the new method is the fast Poisson solver for general domains and the interpolation scheme for the bounda...
We study a fourth order finite difference method for the unsteady incompressible Navier-Stokes equations in vorticity formulation. The scheme is essentially compact and can be implemented very efficiently. Either Briley’s formula, or a new higher order formula, which will be derived in this paper, can be chosen as the vorticity boundary condition. By formal Taylor expansion, the new formula for...
The finite volume method combines the advantage of the finite element method and the finite difference method, while overcoming their shortcomings. This paper describes the development of the finite volume method and the process of using finite volume method for fluid calculations. Finally, this paper introduces the process of using improved finite volume method for solving the flow equations o...
Developing stable and robust high-order finite difference schemes requires mathematical formalism and appropriate methods of analysis. In this work, nonlinear entropy stability is used to derive provably stable high-order finite difference methods with formal boundary closures for conservation laws. Particular emphasis is placed on the entropy stability of the compressible Navier-Stokes equatio...
If we consider a finite difference method simply as a set of equations containing a small parameter (the grid spacing), it is evident that the tools of asymptotic analysis can give us useful information about the method. The applicability of this approach for studying consistency, long time behavior and stability is demonstrated. As example, we use a simple lattice Boltzmann scheme for the 1D a...
flood routing has many applications in engineering projects and helps designers in understanding the flood flow characteristics in river flows. floods are taken unsteady flows that vary by time and location. equations governing unsteady flows in waterways are continuity and momentum equations which in case of one-dimensional flow the saint-venant hypothesis is considered. dynamic wave model as ...
we investigate the long-term behavior of solutions of the difference equation[ x_{n+1}=x_{n}x_{n-3}-1 ,, n=0 ,, 1 ,, ldots ,, ]noindent where the initial conditions $x_{-3} ,, x_{-2} ,, x_{-1} ,, x_{0}$ are real numbers. in particular, we look at the periodicity and asymptotic periodicity of solutions, as well as the existence of unbounded solutions.
we focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of it¨o type, in particular, parabolic equations. the main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید