نتایج جستجو برای: degree of a vertex
تعداد نتایج: 23282068 فیلتر نتایج به سال:
هدف تحقیق حاضر بررسی تاثیر نشانه های فرا گفتمان متنی بر فهم متون انگلیسی به وسیله ی زبان اموزان فارسی زبان است.این تحقیق علاوه بر این کوشیده است تا میزان اگاهی این زبان اموزان و نحوه ی تعامل انان را با متون خوانده شده در زبان انگلیسی به وسیله ی پرسش نامه ی تهیه شده بررسی کند.بر اساس محتوای یک متن انگلیسی یازده سوال درست /غلط طرح گردید و یک مرتبه با ان متن و یک مرتبه با نسخه ای که نشانه ها...
The first geometric-arithmetic index was introduced in the chemical theory as the summation of 2 du dv /(du dv ) overall edges of the graph, where du stand for the degree of the vertex u. In this paper we give the expressions for computing the first geometric-arithmetic index of hexagonal systems and phenylenes and present new method for describing hexagonal system by corresponding a simple g...
The vertex arboricity of graph G is the minimum number of colors that can be used to color the vertices of G so that each color class induces an acyclic subgraph of G. We prove results such as this: if a connected graph G is neither a cycle nor a clique, then there is a coloring of V(G/ with at most [-A(G)/2 ~ colors, such that each color class induces a forest and one of those induced forests ...
Let G be a finite non-abelian group and Z(G) its center. We associate commuting graph $$\Gamma (G)$$ to G, whose vertex set is $$G\setminus Z(G)$$ two distinct vertices are adjacent if they commute. In this paper we prove that the of all groups has maximum degree bounded above by fixed $$k \in {\mathbb {N}}$$ finite. Also, characterize for which associated graphs have at most 4.
The first variable Zagreb index of graph $G$ is defined as begin{eqnarray*} M_{1,lambda}(G)=sum_{vin V(G)}d(v)^{2lambda}, end{eqnarray*} where $lambda$ is a real number and $d(v)$ is the degree of vertex $v$. In this paper, some upper and lower bounds for the distribution function and expected value of this index in random increasing trees (rec...
For a graph $G$ with edge set $E(G)$, the multiplicative sum Zagreb index of $G$ is defined as$Pi^*(G)=Pi_{uvin E(G)}[d_G(u)+d_G(v)]$, where $d_G(v)$ is the degree of vertex $v$ in $G$.In this paper, we first introduce some graph transformations that decreasethis index. In application, we identify the fourteen class of trees, with the first through fourteenth smallest multiplicative sum Zagreb ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید