نتایج جستجو برای: coloring

تعداد نتایج: 12124  

Journal: :Combinatorica 2008
David P. Bunde Kevin G. Milans Douglas B. West Hehui Wu

A parity walk in an edge-coloring of a graph is a walk along which each color is used an even number of times. Let p(G) be the least number of colors in an edge-coloring of G having no parity path (a parity edge-coloring). Let p̂(G) be the least number of colors in an edge-coloring of G having no open parity walk (a strong parity edge-coloring). Always p̂(G) ≥ p(G) ≥ χ′(G). We prove that p̂(Kn) = ...

Journal: :IEICE Transactions 2004
Shuji Isobe Xiao Zhou Takao Nishizeki

A total coloring of a graph G is to color all vertices and edges of G so that no two adjacent or incident elements receive the same color. Let C be a set of colors, and let ω be a cost function which assigns to each color c in C a real number ω(c) as a cost of c. A total coloring f of G is called an optimal total coloring if the sum of costs ω( f (x)) of colors f (x) assigned to all vertices an...

2006
David Koes Seth C. Goldstein Seth Copen Goldstein

Graph coloring is the de facto standard technique for register allocation within a compiler. In this paper we examine the importance of the quality of the coloring algorithm and various extensions of the basic graph coloring technique by replacing the coloring phase of the GNU compiler’s register allocator with an optimal coloring algorithm. We then extend this optimal algorithm to incorporate ...

Journal: :Journal of Graph Theory 2009
Elad Horev Roi Krakovski

A polychromatic k-coloring of a plane graph G is an assignment of k colors to the vertices of G such that every face of G has all k colors on its boundary. For a given plane graph G, we seek the maximum number k such that G admits a polychromatic k-coloring. We call a k-coloring in the classical sense (i.e., no monochromatic edges) that is also a polychromatic k-coloring a strong polychromatic ...

2016
K. K. Myithili R. Parvathi

A hypergraph is a set V of vertices and a set E of non-empty subsets of V , called hyperedges. Unlike graphs, hypergraphs can perform higher-order interactions in social and communication networks. Directed hypergraphs are much like directed graphs. Colors are used to distinguish the classes. Coloring a hypergraph H must assign atleast two different colors to the vertices of every hyperedge. Th...

2006
David P. Bunde Kevin Milans Douglas B. West Hehui Wu

A parity walk in an edge-coloring of a graph is a walk along which each color is used an even number of times. Let p(G) be the least number of colors in an edge-coloring of G having no parity path (a parity edge-coloring). Let p̂(G) be the least number of colors in an edge-coloring of G having no open parity walk (a strong parity edge-coloring). Always p̂(G) ≥ p(G) ≥ χ′(G). We prove that p̂(Kn) = ...

2007
Abhik Roychoudhury Susmita Sur-Kolay

Acyclic-coloring of a graph G = (V; E) is a partitioning of V , such that the induced subgraph of each partition is acyclic. The minimum number of such partitions of V is deened as the vertex arboricity of G. An O(n) algorithm (n = jV j) for acyclic-coloring of planar graphs with 3 colors is presented. Next, an O(n 2) heuristic is proposed which produces a valid acyclic-2-coloring of a planar g...

Journal: :Graphs and Combinatorics 2007
Vincent Jost Benjamin Lévêque Frédéric Maffray

The pre-coloring extension problem consists, given a graph G and a subset of nodes to which some colors are already assigned, in finding a coloring of G with the minimum number of colors which respects the pre-coloring assignment. This can be reduced to the usual coloring problem on a certain contracted graph. We prove that pre-coloring extension is polynomial for complements of Meyniel graphs....

2001
Abhik Roychoudhury Susmita Sur-Kolay

Acyclic-coloring of a graph G = (V;E) is a partitioning of V , such that the induced subgraph of each partition is acyclic. The minimumnumber of such partitions of V is de ned as the vertex arboricity of G. An O(n) algorithm (n = jV j) for acyclic-coloring of planar graphs with 3 colors is presented. Next, an O(n) heuristic is proposed which produces a valid acyclic-2-coloring of a planar graph...

Journal: :CoRR 2005
Vincent Jost Benjamin Lévêque Frédéric Maffray

The pre-coloring extension problem consists, given a graph G and a subset of nodes to which some colors are already assigned, in nding a coloring of G with the minimum number of colors which respects the pre-coloring assignment. This can be reduced to the usual coloring problem on a certain contracted graph. We prove that pre-coloring extension is polynomial for complements of Meyniel graphs. W...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید