نتایج جستجو برای: c53
تعداد نتایج: 416 فیلتر نتایج به سال:
In applied forecasting, there is a trade-off between in-sample fit and out-ofsample forecast accuracy. Parsimonious model specifications typically outperform richer model specifications. Consequently, there is often predictable information in forecast errors that is difficult to exploit. However, we show how this predictable information can be exploited in forecast combinations. In this case, o...
We propose a tree-structured heterogeneous autoregressive (tree-HAR) process as a simple and parsimonious model for the estimation and prediction of tick-by-tick realized correlations. The model can account for different time and other relevant predictors’ dependent regime shifts in the conditional mean dynamics of the realized correlation series. Testing the model on S&P 500 and 30-year treasu...
This paper proposes new dynamic component models of returns and realized covariance (RCOV) matrices based on time-varying Wishart distributions. Bayesian estimation and model comparison is conducted with a range of multivariate GARCH models and existing RCOV models from the literature. The main method of model comparison consists of a term-structure of density forecasts of returns for multiple ...
Recent financial research has provided evidence on the predictability of asset returns. In this paper we consider the results contained in Pesaran-Timmerman(1995), which provided evidence on predictability over the sample 1959-1992. We show that the extension of the sample to the nineties weakens considerably the statistical and economic significance of the predictability of stock returns based...
In this paper we propose a relatively simple procedure to predict Euro-zone industrial production using mostly data derived from the business surveys of the three major economies within the European Monetary Union (France, Germany, and Italy). The basic idea is that of estimating business cyclical indicators to be used as predictors for the industrial production in France and Germany; as far as...
Binary events are involved in many economic decision problems. In recent years, considerable progress has been made in diverse disciplines in developing models for forecasting binary outcomes. We distinguish between two types of forecasts for binary events that are generally obtained as the output of regression models: probability forecasts and point forecasts. We summarize specification, estim...
In this paper, we examine the structural stability of predictive regression models of quarterly real stock returns over the postwar era. We consider predictive regressions models of S&P 500 and CRSP equal-weighted real stock returns based on eight financial variables that display predictive ability in the extant literature. We test for structural stability using the popular Andrews (1993) SupF ...
We investigate if asset return volatility is predictable by macroeconomic and financial variables and shed light on the economic drivers of financial volatility. Our approach is distinct due to its comprehensiveness: First, we employ a data-rich forecast methodology to handle a large set of potential predictors in a Bayesian Model Averaging approach, and, second, we take a look at multiple asse...
The aim of this paper is to forecast (out-of-sample) the distribution of financial returns based on realized volatility measures constructed from high-frequency returns. We adopt a semi-parametric model for the distribution by assuming that the return quantiles depend on the realized measures and evaluate the distribution, quantile and interval forecasts of the quantile model in comparison to a...
This paper considers the problem of model uncertainty in the case of multi-asset volatility models and discusses the use of model averaging techniques as a way of dealing with the risk of inadvertently using false models in portfolio management. Evaluation of volatility models is then considered and a simple Value-at-Risk (VaR) diagnostic test is proposed for individual as well as ‘average’ mod...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید