In this paper, we prove the following two results: First, we study a class of conformally invariant operators P and their related conformally invariant curvatures Q on even-dimensional Riemannian manifolds. When the manifold is locally conformally flat(LCF) and compact without boundary, Q-curvature is naturally related to the integrand in the classical Gauss-Bonnet-Chern formula, i.e., the Pfaf...