A Hankel operator $\mathbf{H}_\varphi$ on the Hardy space $H^2$ of unit circle with analytic symbol $\varphi$ has minimal norm if $\|\mathbf{H}_\varphi\|=\|\varphi \|_2$ and maximal $\|\mathbf{H}_\varphi\| = \|\varphi\|_\infty$. The both only $|\varphi|$ is constant almost everywhere or, equivalently, a multiple an inner function. We show that norm-attaining norm, then norm. If continuous but n...