نتایج جستجو برای: asymptotic wiener index
تعداد نتایج: 465659 فیلتر نتایج به سال:
Introduced in 1947, the Wiener index W (T ) = ∑ {u,v}⊆V (T ) d(u, v) is one of the most thoroughly studied chemical indices. The extremal structures (in particular, trees with various constraints) that maximize or minimize the Wiener index have been extensively investigated. The Harary index H(T ) = ∑ {u,v}⊆V (T ) 1 d(u,v) , introduced in 1993, can be considered as the “reciprocal analogue” of ...
Let G be a simple graph with vertex set and edge set . The function which assigns to each pair of vertices in , the length of minimal path from to , is called the distance function between two vertices. The distance function between and edge and a vertex is where for and. , . The Wiener index of a graph is denoted by and is defined by .In general this kind of index is called a topological index...
The Wiener index of a connected graph G, denoted by W (G), is defined as 12 ∑ u,v∈V (G) dG(u, v). Similarly, the hyper-Wiener index of a connected graph G, denoted by WW (G), is defined as 1 2W (G) + 1 4 ∑ u,v∈V (G) dG(u, v). The vertex Padmakar-Ivan (vertex PI) index of a graph G is the sum over all edges uv of G of the number of vertices which are not equidistant from u and v. In this paper, ...
Let d(G, k) be the number of pairs of vertices of a graph G that are at distance k, λ a real number, and Wλ(G) = ∑ k≥1 d(G, k)kλ. Wλ(G) is called the Wiener-type invariant of G associated to real number λ. In this paper, the Wiener-type invariants of some graph operations are computed. As immediate consequences, the formulae for reciprocal Wiener index, Harary index, hyperWiener index and Tratc...
the wiener index $w(g)$ of a connected graph $g$ is defined as $w(g)=sum_{u,vin v(g)}d_g(u,v)$ where $d_g(u,v)$ is the distance between the vertices $u$ and $v$ of $g$. for $ssubseteq v(g)$, the {it steiner distance/} $d(s)$ of the vertices of $s$ is the minimum size of a connected subgraph of $g$ whose vertex set is $s$. the {it $k$-th steiner wiener index/} $sw_k(g)$ of $g$ ...
let $g$ be a molecular graph with vertex set $v(g)$, $d_g(u, v)$ the topological distance between vertices $u$ and $v$ in $g$. the hosoya polynomial $h(g, x)$ of $g$ is a polynomial $sumlimits_{{u, v}subseteq v(g)}x^{d_g(u, v)}$ in variable $x$. in this paper, we obtain an explicit analytical expression for the expected value of the hosoya polynomial of a random benzenoid chain with $n$ hexagon...
In this note we study the asymptotic limit of large variance in a stochastically perturbed thermostat model, the Nosé-Hoover-Langevin device. We show that in this limit, the model reduces to a Langevin equation with one-dimensional Wiener process, and that the perturbation is in the direction of the conjugate momentum vector. Numerical experiments with a double well potential corroborate the as...
Let $G$ be a molecular graph with vertex set $V(G)$, $d_G(u, v)$ the topological distance between vertices $u$ and $v$ in $G$. The Hosoya polynomial $H(G, x)$ of $G$ is a polynomial $sumlimits_{{u, v}subseteq V(G)}x^{d_G(u, v)}$ in variable $x$. In this paper, we obtain an explicit analytical expression for the expected value of the Hosoya polynomial of a random benzenoid chain with $n$ hexagon...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید