نتایج جستجو برای: artificial neural network
تعداد نتایج: 1026358 فیلتر نتایج به سال:
background: clinically frank thyroid nodules are common and believed to be present in 4% to 10% of the adult population in the united states. in the current literature, fine needle aspiration biopsies are considered to be the milestone of a model which helps the physician decide whether a certain thyroid nodule needs a surgical approach or not. a considerable fact is that sensitivity and specif...
This study was conducted to investigate the prediction of growth performance using linear regression and artificial neural network (ANN) in broiler chicken. Artificial neural networks (ANNs) are powerful tools for modeling systems in a wide range of applications. The ANN model with a back propagation algorithm successfully learned the relationship between the inputs of metabolizable energy (kca...
Rivers are important as the main source of supply for drinking, agriculture and industry.However, drinking water quality in terms of qualitative parameters, is the most important variable. Studias and predicting changes in quality parameters along a river, are one of the goals of water resources planners and managers. In this regard, many water quality models in order to maintain better water ...
Background and purpose: Since the human health is an essential issue in medical sciences, accurate predicting the individual's disease status is of great importance. Therefore, predicting with models minimum error and maximum certainty should be used. This study used artificial neural network model for predicting coronary artery disease (CAD) because it is more precise Comared to after models. ...
in today’s business competitive world, decision makers of companies try to employ standard, efficient, theoretical and operational proven methods as a competitive advantage for making their critical strategic business decisions in order to survive in their industry. in this paper, a hybrid model based on fuzzy analytic hierarchy process (fahp) and artificial neural network (ann) is presented. t...
Introduction: Logistic regression is one of the modeling methods for bipartite dependent variables. On the other hand, artificial neural network is a flexible method with the least limitation. The importance of growing unnecessary beauty surgeries and the importance of prediction and classification made us consider the present study, with the aim of comparing logistic regression and artificial ...
information on nitrate in groundwater resources requires periodic measurements are accurate. despite the measure in some areas due to sensitive social and health community are not reported. therefore, be informed of the status of each area of water quality, modeling is essential. the purpose of this study was the application of artificial neural network method for estimating nitrate and compare...
Background: Gestational diabetes mellitus (GDM) is one of the most common metabolic disorders in pregnancy, which is associated with serious complications. In the event of early diagnosis of this disease, some of the maternal and fetal complications can be prevented. The aim of this study was to early predict gestational diabetes mellitus by two statistical models including artificial neural ne...
The present paper presented a methodology for prioritizing the innovative and entrepreneurial indicators using Multi Criteria Decision Making (MCDM) and Artificial Neural Networks (ANNs), taking into account three individual, organizational and cultural dimensions simultaneously in decision making procedure. This methodology has two main advantages: first, the speed of operation in the accounti...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید