نتایج جستجو برای: altan graph
تعداد نتایج: 198025 فیلتر نتایج به سال:
Let $G$ be a simple graph with vertex set ${v_1,v_2,ldots,v_n}$. The common neighborhood graph (congraph) of $G$, denoted by $con(G)$, is the graph with vertex set ${v_1,v_2,ldots,v_n}$, in which two vertices are adjacent if and only they have at least one common neighbor in the graph $G$. The basic properties of $con(G)$ and of its energy are established.
İstanbul şehri geçmişten bu yana sanatçılara esin kaynağı olan bir şehir olmuştur. Gülsüm Cengiz tarafından hazırlanan Bir Edebiyat Durağı Küçükçekmece adlı araştırma-inceleme kitabı da İstanbul’un ilçesi Küçükçekmece’yi almakta ve burada yaşamış sanatçıları incelemektedir. On üç bölümden oluşan kitapta modern Türk edebiyatı sahasındaki sanatçılar ele alınır. Kitapta işlenen Mehmet Âkif Ersoy, ...
Paul Erdos defined the concept of coprime graph and studied about cycles in coprime graphs. In this paper this concept is generalized and a new graph called Generalized coprime graph is introduced. Having observed certain basic properties of the new graph it is proved that the chromatic number and the clique number of some generalized coprime graphs are equal.
the edge versions of reverse wiener indices were introduced by mahmiani et al. veryrecently. in this paper, we find their relation with ordinary (vertex) wiener index in somegraphs. also, we compute them for trees and tuc4c8(s) naotubes.
The chromatic number of a graph G, denoted by χ(G), is the minimum number of colors such that G can be colored with these colors in such a way that no two adjacent vertices have the same color. A clique in a graph is a set of mutually adjacent vertices. The maximum size of a clique in a graph G is called the clique number of G. The Turán graph Tn(k) is a complete k-partite graph whose partition...
Let $R$ be a commutative ring with identity. An ideal $I$ of a ring $R$is called an annihilating ideal if there exists $rin Rsetminus {0}$ such that $Ir=(0)$ and an ideal $I$ of$R$ is called an essential ideal if $I$ has non-zero intersectionwith every other non-zero ideal of $R$. Thesum-annihilating essential ideal graph of $R$, denoted by $mathcal{AE}_R$, isa graph whose vertex set is the set...
A signed graph is a graph where the edges are assigned either positive ornegative signs. Net degree of a signed graph is the dierence between the number ofpositive and negative edges incident with a vertex. It is said to be net-regular if all itsvertices have the same net-degree. Laplacian energy of a signed graph is defined asε(L(Σ)) =|γ_1-(2m)/n|+...+|γ_n-(2m)/n| where γ_1,...,γ_n are the ei...
A set $Wsubset V (G)$ is called a resolving set, if for every two distinct vertices $u, v in V (G)$ there exists $win W$ such that $d(u,w) not = d(v,w)$, where $d(x, y)$ is the distance between the vertices $x$ and $y$. A resolving set for $G$ with minimum cardinality is called a metric basis. A graph with a unique metric basis is called a uniquely dimensional graph. In this paper, we establish...
the narumi-katayama index was the first topological index defined by the product of some graph theoretical quantities. let $g$ be a simple graph with vertex set $v = {v_1,ldots, v_n }$ and $d(v)$ be the degree of vertex $v$ in the graph $g$. the narumi-katayama index is defined as $nk(g) = prod_{vin v}d(v)$. in this paper, the narumi-katayama index is generalized using a $n$-ve...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید