نتایج جستجو برای: ag tio2 nps
تعداد نتایج: 74959 فیلتر نتایج به سال:
Titanium dioxide nanoparticles (TiO2 NPs) are currently one of the most prolifically used nanomaterials, resulting in an increasing likelihood of release to the environment. This is of concern as the potential toxicity of TiO2 NPs has been investigated in several recent studies. Research into their fate and behaviour once entering the environment is urgently needed to support risk assessment an...
Concerns over the potential risks of nanomaterials to ecosystem have been raised, as it is highly possible that nanomaterials could be released to the environment and result in adverse effects on living organisms. Carbon dioxide (CO2) is one of the main greenhouse gases. The level of CO2 keeps increasing and subsequently causes a series of environmental problems, especially for agricultural cro...
TiO2-coated Ag nanorods (Ag@TiO2 NRs) have been fabricated as multifunctional surface-enhanced Raman scattering (SERS) substrates. Uniform TiO2 shells could sufficiently protect the internal Ag NRs against oxidation and sulfuration, thus the temporal stability of SERS substrates was markedly improved. Meanwhile, due to the synergetic effect between crystalline TiO2 and Ag, the nanocomposites co...
Metal nanoparticles (NPs) are of great interest due to their special optical, [ 1–3 ] electronic, [ 4–8 ] and catalytic [ 9,10 ] properties. [ 11 ] Among metal NPs, Au NPs have been investigated most extensively because of their facile preparation, resistance to oxidation, and surface plasmon resonance (SPR) band that can absorb and scatter visible light. [ 3 ] Core/ shell and alloy bimetallic ...
Dye-sensitized solar cells (DSSCs) were fabricated using open-ended freestanding TiO₂ nanotube arrays functionalized with Ag nanoparticles (NPs) in the channel to create a plasmonic effect, and then coated with large TiO₂ NPs to create a scattering effect in order to improve energy conversion efficiency. Compared to closed-ended freestanding TiO₂ nanotube array-based DSSCs without Ag or large T...
Here we demonstrate that the photoactivity of Au-decorated TiO2 electrodes for photoelectrochemical water oxidation can be effectively enhanced in the entire UV-visible region from 300 to 800 nm by manipulating the shape of the decorated Au nanostructures. The samples were prepared by carefully depositing Au nanoparticles (NPs), Au nanorods (NRs), and a mixture of Au NPs and NRs on the surface ...
Introduction: Because of advancement in nanotechnology, the use of Ag Nanoparticles (NPs) was increased in a wide range of area. Studies that were done in recent years demonstrated that Ag NPs can induce cytotoxicity in cells. One of the parts of UV radiation of sun is UVC (200 – 280 nm) that has antimicrobial effect. Since the effect of simultaneous use of NPs and UVC are sti...
Ag nanoparticles (NPs) were synthesized in formic acid aqueous solutions through chemical reduction. Formic acid was used for a reducing agent of Ag precursor and solvent of gelatin. Silver acetate, silver tetrafluoroborate, silver nitrate, and silver phosphate were used as Ag precursors. Ag+ ions were reduced into Ag NPs by formic acid. The formation of Ag NPs was characterized by a UV-Vis spe...
biofabrication by using fungi is an exciting recent interest to develop an eco-friendly production of metallic nanoparticles (nps) for pharmaceutical applications. this study aimed to synthesize and characterize gold (au) and silver (ag) nps by using penicillium simplisimum. the fungus was grown in fluid czapek dox broth on shaker at 28 ºc and 200 rpm for ten days. then the supernatant was sepa...
The present study reports on the introduction of various nanocatalysts containing nickel (Ni) nanoparticles (NPs) embedded within TiO2 nanofibers and TiO2 microparticles. Typically, a sol-gel consisting of titanium isopropoxide and Ni NPs was prepared to produce TiO2 nanofibers by the electrospinning process. Similarly, TiO2 microparticles containing Ni were prepared using a sol-gel syntheses p...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید