Considering singular Sturm--Liouville differential expressions of the type \[ \tau_{\alpha} = -(d/dx)x^{\alpha}(d/dx) + q(x), \quad x \in (0,b), \; \alpha \mathbb{R}, \] we employ some Sturm comparison-type results in spirit Kurss to derive criteria for $\tau_{\alpha}$ be limit point and circle case at $x=0$. More precisely, if $\alpha \mathbb{R}$ $0 0$ such that $0<x$ sufficiently small, \begi...