نتایج جستجو برای: گراف 2
تعداد نتایج: 2527097 فیلتر نتایج به سال:
فرض کنید g = (v,e) یک گراف ساده باشد. مجموعه ی s? v را اتحاد تهاجمی گوییم، هرگاه برای هر راس در s n(s) ? داشته باشیم |n[v] ?s|?|n[v]?s|. همچنین s را یک اتحاد تهاجمی فراگیر گوییم، هرگاه شرط فوق برای هر راس در v ?s برقرار باشد. یافتن یک اتحاد تهاجمی فراگیر در گراف، یک مساله ی np-سخت است. بنابراین برای به دست آوردن پارامترهای اتحاد تهاجمی فراگیر یعنی ?_o (g) و ?_o ? (g)، نیاز داریم تا کرانهایی برح...
فرض کنید (g=(v,e گرافی با راس های v ویال های e باشد.یک تابع احاطه گری رومی روی گراف g تابعی به صورت {f:v(g)?{0,1,2است به طوری که برای هر راس u با f(u)=0، حداقل یک راس مانند (v?n(u وجود داشته باشد که f(v)=2 .وزن یک تابع احاطه گری رومی f برابر با (f(v)=? f(u است.عدد احاطه گری رومی گراف g که با r(g)? نشان داده می شود عبارتست از مینیمم وزن در میان وزن های توابع رومی ممکن روی گراف g. فرض کنید k یک ...
مسئله یکریختی برای گراف ها یکی از مسائل اساسی در نظریه گراف است. در این پایان نامه به بررسی این مسئله برای گراف های کیلی و سوگراف های کیلی پرداخت می شود. به ازای گروه های متناهی ? و ?، شرایطی ارائه می شود تا هر گراف کیلی از ? با یک گراف کیلی از ? یکریخت باشد. همچنین نشان داده می شود که هر گراف کیلی از یک گروه مشخص از مرتبه 12 با یک گراف کیلی از گروه دووجهی از مرتبه 12 یکریخت است. به طور مشابه ن...
گراف g را صحیح نامیم هرگاه تمام مقادیر ویژه ماتریس مجاورت آن متعلق به مجموعه اعداد صحیح باشد. « کدام گراف ها صحیح هستند؟» این سوالی بود که در سال 1973 توسط هاراری و اسچواینک مطرح شد. با استفاده از یکی از نتایج مقاله ی بابای تحت عنوان «طیف گراف کیلی»، که طیف گراف کیلی یک گروه را بر حسب سرشت های تحویل ناپذیر گروه مربوطه بیان می کند، تعدادی خانواده نامتناهی از گراف های صحیح ارایه می کنیم. همچنین گ...
فرض کنید r یک حلقه جابه جایی و یکدار و z(r) مجموعه مقسوم علیه های صفر آن باشد. گراف مقسوم علیه صفر r) )? را به حلقه r نسبت می دهیم که مجموعه رئوس آن z(r)-{0} می باشد و دو نقطه متمایز x,y به هم متصلند اگر و تنها اگر xy=0. در این پایان نامه نشان می دهیم کدام حلقه های متناهی دارای گراف مقسوم علیه صفر مسطح هستند و حلقه های موضعی 32 عضوی که میدان نمی باشند و گراف مقسوم علیه صفر آن ها نامسطح است را ش...
با شرط x مانند r ، مجموعه ی عناصر ناصفر از r برای حلقه ی جابجایی و یکدار ناصفر (
زیر مجموعهs$ از مجموعه رئوس گراف$g$ ، یک مجموعه ی غالب است، هر گاه هر رأس$v$ در $vsetminus s $ با حداقل یک رأس از $s$ مجاور باشد. عدد غالبgamma (g)$ از گرافg$ ، اندازه ی کوچکترین مجموعه ی غالب از گراف است.فرض کنید$r$ یک حلقه ی ناجابجایی باشد. گراف جابجایی روی$r$ که با نماد$gamma(r)$ نشان داده می شود، یک گراف با مجموعه ی رئوس$rsetminus z(r)$ ...
رنگ آمیزی گراف یکی از معروفترین و پرکاربردترین مباحث در نظریه گراف است. رنگ آمیزی گراف ابتدا در سال 1880 با حدس چهارنگ مطرح شد. این حدس بیان می کرد که هر نقشه را می توان با چهار رنگ، رنگ آمیزی کرد. چندین رنگ آمیزی گراف وجود دارد که رنگ آمیزی رأسی یا یالی گراف بیشترین توجه را به خود جلب کرده اند. در فصل اول این پایان نامه ابتدا مقدماتی از نظریه گراف، که در طول پایان نامه مورد نیاز است، بیان می...
موضوع این پایان نامه مربوط به گراف های کیلی و گراف های صحیح است. در این پایان نامه بررسی می کنیم گراف کیلی روی چه گروه هایی صحیح است. در این پایان نامه تمام گراف های کیلی صحیح روی گروه های آبلی متناهی را پیدا می کنیم. هم چنین در این پایان نامه گراف همینگ گراف سودوکو گراف سودوکوی مکانی و گراف مربع لاتین سراسر قطری را بررسی می کنیم و نشان می دهیم این گراف ها گراف کیلی صحیح هستند.
فرض کنید $ r $ حلقه ای جابه جایی و یکدار و $ z(r) $ مجموعه مقسوم علیه های صفر حلقه $ r $ باشد. گراف جمعی حلقه $ r $ گرافی است که رئوس آن عناصر حلقه می باشد و دو راس متمایز $ x $ و $ y $ مجاورند اگر و تنها اگر $ x+y in z(r) $ . این گراف با نماد $ t(gamma(r)) $ نمایش داده می شود. در این پایان نامه دو زیر گراف $ t_0(gamma(r)) $ و $ z_0(gamma(r)) $ که رئوس آن به ترتیب $ r ^* $...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید