نتایج جستجو برای: متریکشبه ریمانی
تعداد نتایج: 243 فیلتر نتایج به سال:
دراین پایان نامه یک کلاس جدیدازمترهای فینسلری را خواهیم ساخت که درواقع یک توسیع ازکلاس مترهای بروالدمی باشند. ماثابت می کنیم که هرمترفینسلری کامل دراین کلاس ،ریمانی است ، هرگاه تانسورکارتان آن کراندارباشد.سپس نشان خواهیم دادکه مترهای داگلاس - ویل شامل این کلاس جدیدازمترهای فینسلری می باشند.
در سالهای نخست قرن بیستم، هانری پوانکاره پس از آن که همزمان با چند ریاضیدان دیگر موفق شد قضیه یکنواخت سازی را ثابت کند و طبقه بندی رویه ها را نتیجه بگیرد، اولین تلاشها برای طبقه بندی خمینه های سه بعدی را آغاز نمود و این حدس را مطرح کرد که هر خمینه سه بعدی بسته (فشرده و بی لبه) که همبند ساده باشد، با کره سه بعدی همسانریخت است. در این مقاله روند تاریخی تلاش ها برای اثبات حدس پوانکاره را مرور می ...
انحناء پرچمی در هندسه فینسلری، توسیع طبیعی انحناء مقطعی در هندسه ی ریمانی است که ابتدا توسط ل بروالد معرفی شد. برای منیفلد فینسلری (m,f)، انحناء پرچمی یک تابع k(p,y) از صفحات مماس و جهت های است. گوئیم f دارای انحناء اسکالر است هر گاه انحناء پرچمی (x,y) k= (p,y) k مستقل از پرچم های p مربوط به هر میله ی پرچمی ثابت y باشد. متر فینسلری با انحناء اسکالر توسیع طبیعی مترهای ریمانی با انحناء مقطعی ثابت...
یک مجموعه از نقاط پراکنده در صفحه در نظر بگیرید که یک شکل مدل را تشکیل می دهند. هدف، تقریب زدن این توده نقاط پراکنده با یک خم بی اسپلاین x(u) است. این پایان نامه بر اساس یک الگوریتم که منجر به ساخت یک تابع مربع فاصله شده می باشد و با کمینه کردن آن به هدف نهایی می رسد. ابتدا این مطالب در فضای اقلیدسی بررسی شده و سپس به منیفلدهای ریمانی تعمیم داده می شود.
در سالهای نخست قرن بیستم، هانری پوانکاره پس از آن که همزمان با چند ریاضیدان دیگر موفق شد قضیه یکنواخت سازی را ثابت کند و طبقه بندی رویه ها را نتیجه بگیرد، اولین تلاشها برای طبقه بندی خمینه های سه بعدی را آغاز نمود و این حدس را مطرح کرد که هر خمینه سه بعدی بسته (فشرده و بی لبه) که همبند ساده باشد، با کره سه بعدی همسانریخت است. در این مقاله روند تاریخی تلاش ها برای اثبات حدس پوانکاره را مرور می ک...
در این پایان نامه فضاهای 3-بعدی لورنتزی متقارن معرفی شده است. همچنین فضاهای 3-بعدی لورنتزی متقارن با میدان برداری پوچ موازی به صورت سراسری توصیف شده است و رویه های دارای فرم اساسی دوم موازی در فضاهای 3-بعدی لورنتزی متقارن رده بندی شده است. نیز تفاوت های جالبی نسبت به حالت ریمانی بدست می آید.
در این پایان نامه ابتدا نرم مینکوفسکی را معرفی کرده، سپس خمینه فینسلری را معرفی می نماییم، در ادامه به معرفی گروه هولونومی خمینه فینسلری پرداخته و در انتها نشان می دهیم گروه هولونومی خمینه فینسلری موضعاً بطورافکنش? هموار و انحنای ثابت ?، با بعد متناهی است اگر و تنها اگر m ریمانی باشد یا 0=?.
یک نامساوی کلی برای خانواده ای از زیرخمینه های مسطح همدیس را بررسی می کنیم . سپس چند ناوردای ریمانی را معرفی کرده و ارتباط این ناورداها را با ناورداهای ذاتی و خارجی برای کلاسی از خمینه ها بیان می کنیم . همچنین نشان می دهیم که این روابط برای زیرخمینه های دلخواه در حالت کلی برقرار نمی باشد .
در این پایان نامه به بررسی خواص اوربیفلدها و گروهوارهای لی و ارتباط آنها با یکدیگر پرداخته و بدین منظور مثال های متعددی از هر یک ارائه خواهیم داد و سپس با بررسی ساختارهایی روی هر یک از آنها (مانند متریک ریمانی روی اوربیفلدها، هم ارزی و هم ریختی بین گروه وارها) گروه وارهای اوربیفلدی را تعریف و کتگوری اوربیفلدها را توصیف خواهیم نمود.
این پایان نامه از دو قسمت تشکیل شده است. قسمت اول مربوط به تعمیم الصاقهای مهم فینسلری و در نهایت به دست آوردن یک الصاق فینسلری تعمیم یافته است که کلیه الصاقهای فینسلری مشهور را به عنوان حالت خاص در بر میگیرد. این نوع نگرش موجب میشود تا یک نمایش جالب از تئوری الصاقها در هندسه فینسلری ارائه شده و یک دسته بندی از الصاقهای فینسلری فراهم شود. همچنین برخی از کاربردهای عملی این الصاقها مورد بررسی واقع...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید