نتایج جستجو برای: فردهلم
تعداد نتایج: 264 فیلتر نتایج به سال:
در این پایان نامه حل تقریبی معادلات انتگرال دو بعدی فردهلم و ولترای خطی و غیر خطی مورد مطالعه قرار گرفته است. برای این منظور از تابع پایه شعاعی مولتی کوادریک که یکی از انواع توابع برای تقریب می باشد, استفاده شده است. ابتدا روش هایی برای انتخاب پارامتر شکل بهینه ی موجود در تابع مولتی کوادریک بیان شده و سپس از روش هم محلی مبتنی بر توابع پایه شعاعی با گره های گاوس-لوباتو برای تقریب جواب معادلات ا...
در این پایان نامه حل عددی معادلات انتگرال فردهلم خطی نوع دوم به روش تقریب اصلاح شده سیمپسون تشریح می شود. در این روش، معادلات انتگرال را به دستگاه معادلات خطی تبدیل می کنیم، سپس با استفاده از مثال های عددی نشان می دهیم تقریب بدست آمده دقت خوبی دارد.
توابع مثلثی دو بعدی، پایه ای جدید برای بسط توابع دو متغیره معرفی شده است. خواص توابع مثلثی دو بعدی همانند توابع مثلثی یک بعدی می باشد. در واقع توابع مثلثی متعامد از تجزیه توابع پالس- بلوکی بدست می آید و توابع مثلثی دو بعدی، تعمیمی از نوع یک بعدی آن می باشد. در این روش تمام توابع مجهول و یا معلوم با استفاده از توابع مثلثی بسط داده می شود و با بهره جویی از ماتریس عملگر انتگرال گیری p، به سادگی م...
در این پایان نامه روش عملیاتی آدومیان-تاو را به کمک تقریب پده برای حل عددی معادلات انتگرالی-دیفرانسیلی فردهلم غیرخطی تعمیم می دهیم. برای این منظور از دو ماتریس عملیاتی ساده کمک می گیریم تا جواب معادله ی مورد نظر را تعیین کنیم و برای اصلاح دقت جواب از تقریب پده کمک می گیریم. و یک روش تقریب تحلیلی برای حل معادلات انتگرالی-دیفرانسیلی با استفاده از روش تحلیلی هموتوپی و روش هموتوپی-پده ارایه داده ای...
در این رساله ابتدا با استفاده از چند جمله ای های برنولی و خواص آن ها ماتریس های عملیاتی مشتق، انتگرال و حاصلضرب چند جمله ای های برنولی ساخته می شوند و روش ماتریسی برنولی معرفی می گردد. سپس در اولین تلاش روش ماتریسی مذکور را برای حل عددی معادلات دیفرانسیل معمولی ماتریسی مرتبه اول به کار برده و کارایی این روش را نسبت به روش هم مکانی از طریق حل چند مثال عددی نشان می دهیم. همچنین حل عددی معادلات با...
در این پایان نامه معادلات انتگرال دو بعدی در حالت حقیقی و فازی مورد بررسی قرار می گیرد. در فصل اول به بیان مفاهیم مقدماتی که در فصل های بعد مورد استفاده قرار می گیرد می پردازیم. در فصل دوم معادلات انتگرال دو بعدی را تعریف کرده و چند روش عددی و تحلیلی را برای حل این معادلات ارائه می دهیم. فصل سوم نتایج تحقیقات شخصی می باشد، که در آن ابتدا به تعریف و دسته بندی معادلات انتگرال فازی دو بعدی می پ...
ایجاد و گسترش ترک در جامدات یکی از عوامل مهمی است که برای جلوگیری از اثرات مخرب ترک بر روی محیط مورد بررسی قرار می گیرد. با توجه به اینکه ترک در معرض مودهای متفاوت شکست قرار می گیرد، بررسی ترک تحت بارگذاریهای مختلف، کمک شایانی به پیشبینی رفتار محیط دارای ترک میکند. در این پژوهش به صورت تحلیلی اثرات مودهای مختلف شکست (بازشدگی، برشی و پارگی) بر روی ترک حلقوی در محیط ایزوتروپ جانبی بررسی. در هر مو...
در این پایان نامه یک روش جدید برهی حل معادلات فردهلم نوع دوم دو بعدی مورد برسی قرار مگیرد.در این مورد ما از چند جمله ایهای درونیاب استفاده می کنیم بویزه درونیاب دو بعدی.بیش تر توجه ما بع شبکه چیبیشف می باشد.خطا مورد برسی قرار گرفته و ارایع اگوریتم و سپس نتایج عددی و جدول ها مورد بررسی قرار مگیرد
در این پایان نامه یک روش نیستروم برای حل معادله انتگرال فردهلم هم ارز با مسائل مقدار مرزی مرتبهs با معادلات دیفرانسیل کامل مطرح می شودپایداری و همگرایی روش مطرح شده ثابت شده است تعدادی مثال عددی برای توضیح صحت و دقت روش ارائه شده اند که این روش را با روش های دیگر مقایسه می کنند
در این پایان نامه دو روش را برای حل معادلات انتگرال فردهلم ی ی شبه-درون یابی اسپلاین درجه چهارم گسسته ارائه میدهیم: u(x) = f(x) + ? b a k(x, s)u(s)ds ; x ? i := [a, b] که درآنهر روش، تقریب ? ی کل زدن هسته با درنظر گرفتن ی گیریم
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید