نتایج جستجو برای: شبکه های مصنوعی عصبی
تعداد نتایج: 490102 فیلتر نتایج به سال:
در شبکههای عصبی مصنوعی (ANN) روشهای موجود آموزش و واسنجی عصبی بر اساس ساختار پرسپترون چندلایهای می باشد، لیکن این روشها دارای مشکلات ناشی از عدم همگرایی در روشهای یادگیری، عدم ثبات اوزان شبکه در شرایطی که طیف داده های ورودی دارای انحراف معیار بزرگ بوده و بالاخره نیاز به داده و اطلاعات فراوان جهت آموزش شبکه می باشند. برای غلبه بر مشکلات فوق در این تحقیق روش جدید ترکیبی شبکه عصبی مصنوعی – به...
پیش بینی پاسخ روسازیها بر پایه برنامه های بسیار پیشرفته اجزاء محدود، فرصتهای بیشماری را برای ترکیبات پیچیده تحلیل در مهندسی روسازی فراهم کرده است، با این وجود می توان زمان قابل توجه موردنیاز برای انجام تحلیل این مدلها را با کاربرد مدلهای تحلیلی شبکه عصبی مصنوعی حذف کرد. شبک ههای عصبی مصنوعی از لحاظ عملکرد، مدلهای بسیار کارآیی هستند که سرعت محاسباتی آنها کاملاً مستقل از پیچیدگی ریاضیاتی الگوریتم ...
در این مطالعه جهت مدل سازی میزان غلظت تری هالومتان در آب شرب، از شبکه عصبی مصنوعی استفاده شده است. پس از آموزش، شبکه عصبی قادر است براساس مشخصات کیفی آب و میزان غلضت کلر در آب شرب، میزان غلظت تری هالومتان را پیش بینی کند. جهت ارزیابی و تشریح مدل، آب تصفیه خانه سنگر واقع در شهرستان رشت به صورت موردی بررسی شده است. از اندازه گیری های انجام یافته بر روی آب شرب تصفیه خانه سنگر، داده های مورد نیاز،...
در این مقاله، یک رویکرد جدید مدلسازی برای مدل های شبکه عصبی مصنوعی بر مبنای مفاهیم شبکههای عصبی و رگرسیون فازی ارائه شده است. به این منظور، مدل شبکه عصبی مصنوعی در قالب یک مدل رگرسیون غیرخطی فازی فرموله شده است، به نحوی که این مدل، مزایای هر دو مدل رگرسیون فازی و شبکه عصبی مصنوعی را دارد. بنابراین، این مدل به دلیل انعطافپذیری بالا، قابلیت استفاده در شرایط نبود قطعیت، مبهم یا پیجیده را دارد. ...
تخمین پارامتر های پتروفیزیکی مخزن نظیر تخلخل ، نفوذپذیری و اشباع آب و نفت برای ارزیابی و برآورد ذخیره ی هیدرو کربوری از اهمیت خاصی برخوردار است. در خصوص مخازن بسیار ناهمگن (وضعیت متداول مخازن کشور)، پیش بینی این پارامترها پیچیده و در برخی موارد به یک چالش جدی در صنایع بالادستی نفت تبدیل می شود. یکی از راههای تخمین خصوصیات فوق که از دیر باز نیز مرسوم بوده است، اندازه گیری آنها در آزمایشگاه بر رو...
در این مقاله استفاده از مدل های شبکه عصبی مصنوعی (ann) و برخی الگوهای متداول در زمینه پیش بینی نرخ ارز، مورد آزمون و تحلیل قرار گرفته بدین صورت که، عملکرد پنج الگوی رگرسیون خطی در مقایسه با شبکه های عصبی مصنوعی، برای پیش بینی نرخ ارز اسمی (ریال ایران به دلار ایالات متحده آمریکا) مورد بررسی قرار می گیرد. الگوهای رگرسیون خطی عبارتند از روش باکس- جنکینز (الگوی میانگین متحرک انباشته خود همبسته)، فر...
امروزه شبکه های عصبی مصنوعی جایگاه ویژه ای در حیطه مالی پیدا کرده است. پژوهش حاضر به دنبال یافتن روش بهتر برای ساخت و آموزش شبکه های عصبی مصنوعی است که منجر به پیش بینی دقیقتر در موضوع ورشکستگی شود. در این میان سه شبکه عصبی از نوع توابع شعاع مدار ساخته شد که به صورت جداگانه توسط متغیرهای مدل آلتمن (1983)، اسمایوسکی (1984) و ترکیبی آموزش داده شدند. پس از سنجش توانایی سه مدل در پیش بینی ورشکستگی...
زمینه: در پژوهش حاضر به شناسایی عوامل موثر بر پیش بینی ورشکستگی شرکتهای ایرانی با استفاده از سیستم شبکه های عصبی مصنوعی (ANN) بر مبنای رویکرد پرسپترون چندلایه (PS) و ارائه یک مدل آماری مناسب به منظور برآورد ورشکستگی شرکتهای ایرانی، با استفاده از یافته های حاصل از اجرای شبکه ANN پرداخته شده است. هدف: در پژهش حاضر به دنبال پاسخ گویی به این پرسش هستیم که آیا عوام...
rivers and runoff have always been of interest to human beings. in order to make use of the proper water resources, human societies, industrial and agricultural centers, etc. have usually been established near rivers. as the time goes on, these societies developed, and therefore water resources were extracted more and more. consequently, conditions of water quality of the rivers experienced rap...
شبکه های عصبی مصنوعی توانست سکته قلبی را در آینده نزدیک (2 هفته) را با دقت قابل چشم گیر در بیماران با نوار قلب غیر تشخیصی پیش بینی کند. همچنین استفاده از الگوریتم ژنتیک به منظور بهینه سازی در شبکه چند لایه ای پرسپترون توانست دقت عملکرد شبکه های عصبی را به طور چشم گیری بهبود ببخشد.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید