نتایج جستجو برای: شبکه های عصبی فیدبک دار

تعداد نتایج: 495041  

جهت ارزیابی عملکرد پاشش یک سمپاش زراعی نرخ متغیر، از روش شبکه عصبی مصنوعی استفاده شد. داده های لازم برای مدل سازی، از آزمون های مزرعه ای به دست آمد. برای مدل سازی بده خروجی افشانک ها،727 شبکه با چهار نوع مدل عصبی مصنوعی خطی، پرسپترون چندلایه، تابع پایه شعاعی و رگرسیون تعمیم یافته آزمون شدند. برای هر افشانک 45، 22 و 23 داده به ترتیب برای آموزش، اعتبارسنجی و آزمایش استفاده شد. مدل تابع پایه شعاعی...

ژورنال: اقتصاد مقداری 2015

در بسیاری از مطالعات برای پیش بینی متغیرهای اقتصادی اغلب از روش های کمی مبتنی بر داده های سری زمانی یا مقطع زمانی استفاده می شود. مطالعات سری زمانی و مقطع زمانی ناهمگنی کشورها را کنترل نمی کنند و همواره ریسک به دست آورن نتایج و پیش بینی های اریب دار وجود دارد. داده های پانل اطلاعات و درجه آزادی بیشتری را فراهم می آورد که این امر موجب حصول نتایج و پیش بینی های دقیق تری می شود. با توجه به سهم قاب...

ژورنال: :تحقیقات کاربردی علوم جغرافیایی 0
امیرحسین حلبیان استادیار اقلیم شناسی، گروه جغرافیا، دانشگاه پیام¬نور، تهران، ایران محمد دارند استادیار اقلیم شناسی، دانشگاه کردستان

بارش مهمترین سنجه­ی هواشناسی و اقلیمی است. در این پژوهش به منظور پیش­بینی بارش اصفهان از داده های بارش ماهانه­ی ایستگاه همدید اصفهان در بازه­ی آماری (1951-2009) به مدت 59 سال و به دلیل رفتار غیرخطی بارش از شبکه های عصبی مصنوعی جهت پیش­بینی آن بهره گرفته شد. در این ارتباط، 70 درصد داده­ها جهت آموزش شبکه و 30 درصد داده ها برای تست و اعتبار سنجی اختصاص داده شد. نتایج پژوهش بعد از آزمون شبکه با لای...

ژورنال: :فصلنامه علمی پژوهشی پژوهش های اقتصادی (رشد و توسعه پایدار) 2008
رضا تهرانی وحید عباسیون

زمانبندی معاملات سهام مسأله¬ای بسیار مهم و مشکل به دلیل پیچیدگی بازار سهام است. آنچه اهمیت دارد پیش¬بینی روند قیمت سهام است که هدف اصلی در مباحث تحلیل تکنیکی است. گرچه این امر به دلیل دخالت عوامل متعدد بازار و روابط بین آنها چندان آسان نیست. به نظر می¬رسد استفاده از ابزارها و الگوریتمهای محاسباتی پیچیده¬تر مانند شبکه¬های عصبی مصنوعی در مدلسازی فرآیندهای غیر خطی که منتج به قیمت و روند سهام می¬شو...

در این پژوهش برای تعیین روش پیش بینی قیمت سهام، یک شبکه عصبی LM-BP بر اساس سری های زمانی با توجه به قیمت باز، بالاترین قیمت، پایین ترین قیمت، قیمت بسته و حجم معاملات ارائه شد. در پژوهش حاضر، 315 روز قیمت سهام را برای ایجاد 10 نمونه انتخاب و مجموعه آزمون شامل قیمت سهام از روز 316 تا روز 320 را انتخاب و از شبکه عصبی LM-BP استفاده شده است. در این پژوهش، تعیین نقطه بحرانی بیش از حد، عدم تقارن و شما...

روح الله تقی زاده مهریزی علی فاضل یزدی محمدحسین طحاری مهرجردی

سرمایه¬ فکری به عنوان سرمایه واقعی و یکی از مهمترین سرمایه¬های سازمانها و شرکتهای عصر حاضر مطرح است. هدف از اجرای این تحقیق بررسی عملکرد شبکه¬های عصبی مصنوعی در پیش¬بینی کارایی سرمایه فکری شرکت¬های پذیرفته شده در بورس اوراق بهادار می باشد. در این تحقیق ابتدا با استفاده از مدل تحلیل پوششی داده¬ها و با در نظر گرفتن متغیر ضریب ارزش افزوده سرمایه فکری به عنوان ورودی مدل و سه متغیر بازده سهام، نرخ ب...

ژورنال: :نشریه دانشکده فنی 2005
علی غفاری منصور نیکخواه بهرامی مرتضی محمد ظاهری

در این مقاله روش جدیدی برای مدل سازی خطی سیستم های غیر خطی ارائه می گردد . اساس روش پیشنهادی طراحی یک شبکه عصبی مصنوعی دو لایه و آموزش آن بر مبنای داده های ورودی- خروجی است . وزن های اتصالات این شبکه ضرایب تابع تبدیل هستند . در سیستم هایی که رفتار آنها خطی باشد ، روش حداقل کردن مربعات خطا (lse) بهترین نتایج مدل سازی را ارائه می نماید . در سیستم هایی که رفتار غیر خطی دارند ، نظیر بعضی قسمت های ب...

چکیده شبکه های عصبی در دهه ی اخیر به عنوان ابزار قدرتمندی جهت پیش بینی در حوزه های مختلف مورد استفاده قرار گرفته اند. در این تحقیق از شبکه عصبی پیشخور پرسپترون چند لایه (MLP) با یادگیری پس انتشار از الگوریتم آموزش انتشار به عقب (BP)، با تکنیک بهینه سازی عددی لونبرگ- مارکوات (LM)،توسط نرم افزار متلب مورد استفاده قرار گرفت. درصد رطوبت کیک ، دمای پرس و زمان بسته شدن پرس به عنوان متغیرهای ورودی و خ...

رضوان کریمی فاطمه بروسان فخری یوسفی, مهراونگ قائدی نادیه پارسازاده

در این پژوهش از جاذب نانوذره ZnO-Cr  نشانده شده بر کربن فعال به منظور حذف رنگ دی سولفین بلو استفاده شده و سپس با کمک شبکه عصبی مصنوعی میزان حذف آن را پیش ­بینی شد. اثر پارامترهای گوناگون شامل pH، مقدار جاذب، غلظت رنگ­ ها و زمان به ­هم خوردن روی درصد حذف به روش فناوری­ های طراحی آزمایش مورد بررسی و بهینه شد. همچنین مدل­ های سینتیکی و هم ­دماهای جذبی و همچنین پارامترهای ترمودینامیکی مورد بررس...

در تحقیق حاضر، هدف مقایسه تخمین بار رسوب معلق در سدهای مخزنی با استفاده از شبکه عصبی مصنوعی و سیستم استنتاج فازی- عصبی می باشد. بررسیها توسط برنامه  MATLAB انجام شده است و ورودی ها شامل دبی رودخانه سفید رود و خروجی، غلظت رسوب در گام زمانی بوده است.ورودی و خروجی رسوب دارای روند مثبت بوده و 80 درصد داده ها جهت آموزش و 20 درصد داده ها جهت آزمون شبکه مورد استفاده قرار گرفت. از تعداد 229 داده موجود ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید