نتایج جستجو برای: خمینه های 4
تعداد نتایج: 1716150 فیلتر نتایج به سال:
دراین پایان نامه که شامل سه فصل می باشد، در فصل اول به معرفی مفاهیم و بیان قضایایی پرداخته ایم که پیشنیاز مطالب فصل های بعدی می باشند. در فصل دوم مانیفلدهای سایا وتقریبا سایای متریک را معرفی کرده ایم. فصل سوم شامل شش بخش می باشد،که بخش اول ودوم آن مروری برمانیفلدهای تقریباهرمیتی ومانیفلدهای تقریبا سایای متریک می باشد. در بخش سوم، حاصلضرب دو مانیفلد تقریبا سایای متریک را مورد مطالعه قرار داد...
هندسه دیفرانسیل درباره ی فضا (خمینه) و یک ساختار هندسی روی آن فضاست. ریمان در سخنرانی خود بیان کرد که ” در واقع مسئله به کشف روابط و مقیاس هایی در ارتباط با فضا که می توانند تعیین شوند، منجر می شود...". فهمیدن اینکه چگونه خمینه ها از یکدیگر به طور هندسی متفاوت هستند موضوع کلیدی است. نتایجی از این پژوهش مربوط به چگونگی تغییر هندسه یک خمینه است، وقتی که التصاق های متریکی تغیییر می کنند. درباره ی ...
هدف: سطوح بالای همیاری در جوامعی شکل می گیرد که آن افرادی از هنجارهای خاصی تخطی کنند، با رفتار تنبیهی دیگران مواجه شوند. هدف مطالعه حاضر تفکیک انواع واکنش افراد به پیشهادهای ناعادلانه و بررسی مولفه های الکتروفیزیولوژیک آنان بود. روش: 40 نفر جنسیت مذکر دانشجویان دانشگاه شهید بهشتی طریق نمونه گیری دسترس این شرکت کردند آنها اصلاح شده بازی های دیکتاتور اولتیماتوم مورد سنجش ارزیابی قرار گرفت. یا...
ابتدا یک زیردیفرانسیل جدید برای توابع موضعاً لیپ شیتز معرفی می گردد. بر مبنای این زیردیفرانسیل روشهای نیوتن و روشهای شبه نیوتن برای حل دستگاه معادلات غیرهموار و دستگاه معادلات ترکیبی بیان می گردد. همچنین روش نیوتن برای پیدا کردن نقطه منفرد از یک میدان برداری روی خمینه های ریمانی به کار برده می شود و قضیه کانتروویچ در روش نیوتن روی خمینه های ریمانی گسترش داده می شود.
نخستین بار برگر ثابت کرد اگر روی یک خمینه ی ریمانی همبند ساده متر تحویل ناپذیر تعریف شود گروه هولونومی آن زیر گروهی از u(m),so(n),su(m),sp(m),sp(m)sp(1),spin(7) و یا زیر گروهی از g2 خواهد بود. اما اینکه تحت چه شراطی هر یک از این حالت ها می تواند اتفاق بیافتد و آیا اینکه همه ی این حالات اتفاق می افتند یا نه، مطلبی بود که سی سال بعد یعنی در سال 1985 دانشمندان موفق شدند آن را نشان دهند و...
چکیده هر زیرگروه ? ازpsl(2,c) که به طور ناپیوسته ویژه روی h^3 عمل می کند را یک گروه کلاینی می نامیم و ? h?^3??یک ساختار 3-خمینه هذلولوی دارد. یک گروه شاتکی که به طور ناپیوسته ویژه و آزاد روی h^3 عمل می کند، 3-خمینه هذلولوی موسوم به گوی توپر دسته دار را یکنواخت سازی می کند. هر گروه شاتکی? روی زیرمجموعه ای از ? s?^? به طور ناپیوسته ویژه عمل می کند. این زیر مجموعه را...
این پایان نامه براساس مقاله ای از زییا تحت عنوان نقاط هوموکلینیک و تقاطع های زیرخمینه های لاگرانژی به بررسی تقاطع های هوموکلینیک در دیفیومرفیسهای سیمپلتیک می پردازد. بنابراین فصل اول و دوم به بررسی و معرفی اجمالی فضای برداری سیمپلتیک و خمینه سیمپلکتیک اختصاص داده شد و در فصل سوم مقدمات لازم از دستگاههای دینامیکی آورده شده است . در فصل آخر نظریه تقاطع زیرخمینه های لاگرانژی یک خمینه سیمپلکتیک آور...
انگیزه های متعددی در گسترش آنالیز هندسی تصادفی نقش داشته است. یکی از آشکارترین آنها این است که محیط زندگی دستگاههای دینامیکی تصادفی همچون دستگاههای دینامیکی عادی، خمینه ها هستند. برای مثال کارهای پرن مربوط است به حرکت براونی روی گروههای دروان. فرآیندهای نفوذ ونیمه مارتینگل ها موجب ظهور اشیاء هندسی مرتبه دومی می شوند که کا را به هندسه های ریمانی و زیرریمانی می کشاند. در واقع ارتباط نزدیکی بین مع...
در این پزوهش یک زیر مجموعه ی n از یک خمینه ی همتافته m گروه وابرریختی های همیلتونی ham وابسته شده و روی این گروه نیم نرمی موسوم به نیم نرم هوفر تعریف شده و خواص این گروه وقتی n یک زیر خمینه ی همتافته باشد مورد بررسی قرار گرفته.
مهمترین هدف ما از نوشتن این پایان نامه بررسی هندسه به وسیله کلافهای مماسی است. به عبارت دیگر کلافهای مماسی خمینه های ریمانی را مورد مطالعه قرار میدهیم و کروشه لی آنها را معرفی میکنیم. مترهای طبیعی sasaki و cheeger-gromollرا بررسی میکنیم والتصاقهای levi-civita انها و انحناهای مختلف انها را محاسه میکنیم. با این کار به ارتباط های جالبی بین هندسه خمینه ریمانی(gوm) و کلاف مماسی آن tmکه با این...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید