نتایج جستجو برای: ترکیب شبکه های عصبی
تعداد نتایج: 499758 فیلتر نتایج به سال:
شبکههای عصبی مصنوعی بهعنوان یکی از تکنیکهای غیرخطی در مطالعات اقلیمی و هیدرولوژی اهمیت فراوانی بهخود اختصاص دادهاند. تغییراقلیم و بهدنبال آن گرمایش جهانی از پدیدههای اقلیمی به شمار میرود. شمار روزهای خشک و تداوم آن خشکسالی را بهدنبال دارد. در این پژوهش از دادههای بارش روزانه طی سالهای (1976-2008) و شبکه عصبی مصنوعی در نرمافزار MATLAB بهمنظور پیشبینی شمار روزهای خشک ایستگاه تهران ...
دشت هادیشهر با وسعتی معادل 57/55 کیلومترمربع در شمال غرب استان آذربایجان شرقی واقع شده است. در چند سال اخیر، به دلیل برداشت بیرویه از آبهای زیرزمینی این دشت، سطح آب زیرزمینی افت شدیدی پیدا کرده است. لذا بهمنظور یافتن راهکارهایی مفید برای مدیریت صحیح منابع آب زیرزمینی، از ترکیب مدل هوش مصنوعی و زمینآمار برای پیشبینی زمانی و مکانی سطح آب زیرزمینی استفاده شده است. ابتدا برای مدلسازی به روش ...
هدف از این مطالعه تعیین برخی عوامل تأثیر گذار بر پدیده طوفان گردوغبار با استفاده از روش های مختلف است. به منظور تعیین مناسب ترین ترکیب ورودی، از روش های کاهش متغیر از قبیل تحلیل عاملی (حداکثر احتمال، تجزیه مؤلفه های اصلی)، آزمون گاما و رگرسیون چند متغیره استفاده شد. هر کدام از روش های مذکور ترکیب متفاوتی را ارائه نمودند که هر کدام از این ترکیب ها در مدل شبکه عصبی پیشخور پس انتشار با توابع آموزش...
در این مقاله، روشی برای بهینه سازی فرآیند با چند سطح پاسخ به وسیله شبکه های عصبی پیشنهاد می شود که در آن از مفهوم مطلوبیت مقدار هر متغیر پاسخ جهت پیش بینی استفاده می کند. در این پژوهش شبکه پس انتشار پیش خور با دو لایه پنهان استفاده می شود. تعداد نرونهای لایه پنهان با استفاده از معیار میانگین مربع خطا برای داده های آموزش و تست تعیین می گردد. تعداد نرون های لایه اول برابر تعداد فاکتورها و تعداد ن...
در این مقاله، به منظور ارزیابی تأثیر دینامیک های آشوب گونه در افزایش کارایی شبکه های عصبی بازگشتی در بازشناسی مقاوم الگو، دو مدل برای شبکه های عصبی آشوب گونه ارائه شده است. در مدل اول که براساس نظریه انتخاب طبیعی طراحی گردیده است، شبکه عصبی بازگشتی جاذب (arnn) به عنوان هوش حاکم، تنوعات ایجاد شده توسط گره های آشوبی را در جهت رسیدن به جواب بهینه هدایت می نماید. در مدل دوم، ساختاری از شبکه عصبی آش...
یکی از گزینههای موجود جهت سرمایه گذاری نقدینگی، بورس و اوراق بهادار میباشد. با توجه به ارتباطات غیرخطی موجود میان متغیرهای موثر بر قیمت سهام، شبکه های عصبی مصنوعی یکی از مناسب ترین رویکردهای موجود جهت پیشبینی قیمت سهام می باشند. در این مقاله سعی شده تا از طریق ترکیب نگاشتهای آشوبی و الگوریتم رقابت استعماری، زاویه حرکتی مستعمرات به سمت استعمارگر اصلاح شده و به این ترتیب احتمال قرارگیری در دا...
شروع{چکیده} یافتن بهترین ترکیب عوامل کنترلی برای بهینه سازی توأمان چندین متغیر پاسخ که اکثراً با یکدیگر در تضادند، یکی از مهم ترین نیازهای مسائل صنعتی است. روش معمول برای حل این گونه مسائل استفاده از رگرسیون چندجمله یی برای شناسایی روابط بین عوامل کنترلی و متغیرهای پاسخ است، در حالی که شبکه ی عصبی مصنوعی در حالاتی که این روابط پیچیده باشد قابلیت مناسب تری از خود نشان می دهند. در این نوشتار، برخل...
امروزه استفاده ی روز افزون از تجهیزات الکترونیکی و بارهای غیر خطی در سیستم قدرت، مسئله کیفیت توان را به یک موضوع مهم تبدیل کرده است. در این مقاله برای شبیه سازی وقایع کیفیت توان به طور همزمان از دو روش مدل سازی ریاضی و داده های حاصل از شبیه سازی با نرم افزار Pscad استفاده شده است. با توجه به عملکرد بسیار خوب شبکه های عصبی در کارهای تشخیص الگو و طبقه بندی، شبکه عصبی چند لایه برای طبقه بندی وقایع...
در این مقاله روش شبکه عصبی هاپفیلد برای تفسیر هوشمند داده های گرانی استفاده شده است. یک شبکه عصبی هاپفیلد برای تخمین عمق چشمه گرانی طراحی شده است. این شبکه طراحی شده برای داده های مصنوعی و واقعی آزمایش شده اند. در مورد داده های واقعی این شبکه برای تخمین عمق یک تونل قنات واقع در موسسه ژئوفیزیک به کار برده شده و نتایج حاصله به مقادیر واقعی عمق بسیار نزدیک است.
سابقه و هدف: مدل سازی سینتیک خشک شدن با استفاده از روشهای جدید مدل سازی از جمله منطق فازی و شبکه های عصبی مصنوعی می تواند به بهینه سازی فرایند و کاهش انرژی مصرفی کمک کند. در این پژوهش علاوه بر مدل سازی رگرسیونی، در رویکردی جدید اصول منطق فازی و شبکه های عصبی مصنوعی به صورت ترکیبی و مکمل هم به کار برده شده و مدلی فازی – عصبی ارائه ودر نهایت توپولوژی بهینه شبکه های عصبی مصنوعی برای خشک کردن پیاز ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید