نتایج جستجو برای: تبدیل mllr

تعداد نتایج: 35597  

2007
Makoto Tachibana Keigo Kawashima Junichi Yamagishi Takao Kobayashi

This paper describes a classification technique for emotional expressions and speaking styles of speech using only a small amount of training data of a target speaker. We model spectral and fundamental frequency (F0) features simultaneously using multi-space probability distribution HMM (MSD-HMM), and adapt a speaker-independent neutral style model to a certain target speaker’s style model with...

2001
Jen-Tzung Chien

The uncertainty in parameter estimation due to the adverse environments deteriorates the speech recognition performance. It becomes crucial to incorporate the parameter uncertainty into decision so that the classification robustness can be assured. In this paper, we propose a linear regression based Bayesian predictive classification (LRBPC) for robust speech recognition. This framework is cons...

2001
Bowen Zhou John H. L. Hansen

In this paper, we propose a novel algorithm for rapid speaker adaptation based on our Structural Maximum Likelihood Eigenspace Mapping (SMLEM). The proposed method constructs a binary-tree structured hierarchical Speaker Independent (SI) eigenspace at different levels from well-trained SI system models, and then dynamically constructs a new set of speaker dependent (SD) eigenspaces at correspon...

2003
L. Wang

This paper addresses the use of discriminative training criteria for Speaker Adaptive Training (SAT), where both the transform generation and model parameter estimation are estimated using the Minimum Phone Error (MPE) criterion. In a similar fashion to the use of I-smoothing for standard MPE training, a smoothing technique is introduced to avoid over-training when optimizing MPEbased feature-s...

2012
Seckin Uluskan John H. L. Hansen

A new adaptation strategy for distant noisy speech is created by phoneme class based approaches for context-independent acoustic models. Unlike the previous approaches such as MLLR-MAP adaptation which adapts acoustic model to the features, our phoneme-class based adaptation (PCBA) adapts the distant data features to our acoustic model which has trained on close microphone TIMIT sentences. The ...

1998
Peter Beyerlein Xavier Aubert Reinhold Haeb-Umbach Dietrich Klakow Meinhard Ullrich Andreas Wendemuth Patricia Wilcox

In this paper the Philips Broadcast News transcription system is described. The Broadcast News task aims at the recognition of \found" speech in radio and television broadcasts without any additional side information (e.g. speaking style, background conditions). The system was derived from the Philips continuous mixture density crossword HMM system, using MFCC features and Laplacian densities. ...

2010
Andreas Stolcke Murat Akbacak Luciana Ferrer Sachin S. Kajarekar Colleen Richey Nicolas Scheffer Elizabeth Shriberg

We investigate a variety of methods for improving language recognition accuracy based on techniques in speech recognition, and in some cases borrowed from speaker recognition. First, we look at the question of language-dependent versus language-independent phone recognition for phonotactic (PRLM) language recognizers, and find that language-independent recognizers give superior performance in b...

2001
Zhipeng Zhang Sadaoki Furui

Speaker clustering is one of the major methods for speaker adaptation. MLLR (Maximum Likelihood Linear Regression) adaptation using transformation matrices corresponding to phone classes/clusters is another useful method especially when the length of utterances for adaptation is limited. In these methods, how to decide the most appropriate number of clusters is an important research issue. This...

2003
Wu Chou

In this paper, the theoretical framework of maximum a posteriori linear regression (MAPLR) based variance adaptation for continuous density HMMs is described. In our approach, a class of informative prior distribution for MAPLR based variance adaptation is identified, from which the close form solution of MAPLR based variance adaptation is obtained under its EM formulation. Effects of the propo...

2010
Jianhua Lu Ji Ming Roger F. Woods

Most conventional techniques for noise adaptation assume a clean initial speech model which is adapted to a specific noise condition using adaptation data accumulated from the condition. In this paper, a different problem is considered, i.e. adapting a noisy speech model to a specific noise condition. For example, the initial noisy model may be a multi-condition model which is used to provide m...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->