نتایج جستجو برای: ایدال محدب
تعداد نتایج: 1118 فیلتر نتایج به سال:
این پایان نامه شامل سه فصل است : در بخش اول از فصل اول نگاشتهای چندمقداری ، نگاشتهای چند مقداری محدب و مطالبی که در سایر بخشها به آنها نیاز است معرفی می شود. در بخش دوم قضایای نگاشت بازوگراف بسته برای نگاشتهای چندمقداری محدب را می آرویم. فصل دوم اساسی ترین فصل پایان نامه است که در بخش اول آن نگاشتهای چند مقداری نیم محدب و توابع نیم محدب معرفی خواهند شد و سپس مسائلی را در مورد نگاشتهای چندمقداری...
برای اثـبات قضیه معـروف تجزیه کهـن، حتی در جــبرهای باناخ، داشتـــــن همانی تـقـــریبی کراندار ازاهمیت ویژه ای برخوردار است. درتعمیم قضیه کهن به جبرهای توپولوژیکی، نه تنها وجود یک همانی تقریبی کراندار کماکـــان مورد نیاز است. بلکه برای اثـــــــبات قضیه، کرانداری قویــتری نیز اعمال شده است . دراین مقالـــه ضمن مطالعه یک مسئله باز معروف نسبتا قدیمی، در مورد همانی های تقریبی کرانداری یکنواخت، در ...
پایه های گربنر یکی از ابزارهای محاسباتی برای مطالعه ایدال های چندجمله ای است. مفهوم پایه گربنر فراگیر را میتوانیم توسیع پایه گربنر در حلقه چندجمله ایها با ضرایب پارامتری در نظر گرفت. در بسیاری کاربردها محاسبه این چنین ئایه ای ضروری است. به عنوان مثال در رباتیک، هندسه، شبکه الکتریکی و جبرخطی کاربردهای بارزی دارد. این مفهوم برای اولین بار توسط وایزفنینگ در سال 1992 معرفی شد و الگوریتم مناسب برای ...
قضیه کراین میلمن یکی از قضایای اصلی در آنالیز تابعی است که بیان می کند برای هر مجموعه محدب فشرده k از یک فضای محدب موضعی، (( k ) ext ) co = k که در آن ( k) ext مجموعه همه نقاط انتهایی k است. در این پایان نامه تعمیمی از قضیه فوق برای سازه های ابرمتناهی به صورت زیر بیان و اثبات می شود. هر زیرمجموعه ? c-محدب و فشرده در توپولوژی ? -ضعیف از سازه ابرمتناهی r با بستار ? -ضعیف پوش ? c-محدب نقاط ? c...
مفهوم تحدب و توابع محدب یکی از مفاهیم مهم در آنالیز ریاضی است که بسیاری از جنبه های آن بررسی و تعمیم داده شده است. در این پایان نامه به بررسی برخی تعمیم های مفهوم تحدب روی گروه های توپولوژیک می پردازیم. به ویژه توابع محدب میانی روی گروه های ریشه ای تقریب پذیر و توابع محدب روی گروه های توپولوژیک آبلی در حالت کلی را بررسی می کنیم. و برخی قضایای کلاسیک مانند برنشتاین - دوش و استراوسکی را برای آ...
فرض کنیم s کلاس تمام توابع تحلیلی و تک ارز به فرم f(z)=z+?_(k=2)^???a_k z^k ? (1) روی دیسک واحد ?={z: z?c,|z|<1 } و t زیر کلاسی از s شامل توابع تک ارز به فرم f(z)=z-?_(k=2)^???a_k z^k ? (2) باشد که تحلیلی روی دیسک واحد ? هستند. در این پایان نامه کلاس های مختلفی را بررسی می کنیم. این کلاس ها از تأثیر عملگرهای خاص روی توابع تحلیلی ذکر شده و صدق کردن در شرایط ویژه تولید می شوند. برای مث...
در این پایان نامه ارتباط بین دو موضوع تحقیقاتی مجموعه های ناهموار و نظریه ی مشبکه مورد توجه است. نظریه ی مشبکه نقش مهمی در علوم رایانه و مهندسی دارد. همچنین در شاخه هایی از ریاضیات مانند ترکیبیات, علم اعداد و گروه ها دیده می شود. انگیزه ی ما در این پایان نامه, بحث درباره ی ویژگی های جبری مجموعه های ناهموار است که از ایدال ها در مشبکه ها نتیجه می شوند. در ادامه, رده ای ویژه از همریختی مجموعه-مق...
درسالهای اخیر چندین توسیع وتعمیم برای کلاس توابع محدب در نظر گرفته شدکه یک تعمیم قابل ملاحظه آن توابع شبه محدب بود. تابع را یک تابع شبه محدب می نامیم هرگاه یک مجموعه شبه محدب، غیرتهی باشد.به شرط آنکه یک تابع برداری مقدار موجود باشد به طوریکه رابطه ذیل برقرار باشد شبه تحدب دربهینه سازی غیرخطی وشاخه های ناب علوم کاربردی، بسیار موثراست که اولین بارتوسط شخصی به نام هانسون [14] در سال 1981 ارائ...
برای یک گروه محدب موضعی g ابتدا یک توپولوژی روی جبر اندازه m(g) معرفی می کنیم و سپس دوگان دوم آن را مجهز به نوعی از ضرب آرنز کرده و خواص آن را به عنوان یک جبر باناخ مورد مطالعه قرار می دهیم. علاوه بر این به بررسی مساله یکریختی های طولپا روی آن می پردازیم.
تمامی حلقه ها در این نوشتار تعویض پذیر و یکانی هستند و 0 ? 1. هم چنین تمامی زیرحلقه ها، توسیع حلقه ها، همریختی ها و مدول ها نیز یکانی می باشند. توسیع حلقه ای از حلقه های تعویض پذیر را یک توسیع مینیمال می نامیم ( را توسیع مینیمال می نامیم)، هرگاه بین و هیچ حلقه ی دیگری یافت نشود. توسیع مینیمال را می توان به دو دسته تقسیم نمود. یک توسیع مینیمال را بسته می نامیم اگر در بسته ی صحیح باشد. در غی...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید