نتایج جستجو برای: انتگرال اول

تعداد نتایج: 78318  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه بیرجند - دانشکده ریاضی 1394

در روش انتگرال گیری متناهی مورد بحث در این پایان نامه برای حل معادلات دیفرانسیل با مشتقات جزئی‏، ماتریس های انتگرال گیری متناهی از مرتبه اول به ترتیب با استفاده از هر دو الگوریتم تقریب خطی معمولی و درونیابی با کمک توابع پایه شعاعی ساخته می شوند. این ماتریس ها می توانند برای بدست آوردن ماتریس های انتگرال گیری مراتب بالاتر استفاده شوند. همچنین روش فوق با ترکیب تکنیک لاپلاس‏، برای حل معادلات دیفرا...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه کردستان - دانشکده علوم پایه 1390

روش عناصر مرزی، به عنوان یک تکنیک عددی قوی برای حل بسیاری از معادلات دیفرانسیل جزئی به کار می رود. اما وجود جملات ناهمگن در بسیاری از معادلات، سبب به وجود آمدن انتگرال های دامنه ای در فرمول روش عناصر مرزی می شود که کارایی تکنیک را تا حد زیادی کاهش می دهد. برای مقابله با این مشکل، تکنیک های بسیاری پیشنهاد شده است. در این پایان نامه، به منظور حل مسأله ی ناپایدار انتقال حرارت، از روش عناصر مرزی اس...

پایان نامه :دانشگاه تربیت معلم - سبزوار - دانشکده ریاضی و کامپیوتر 1390

بسیاری از مسائل مهم فیزیکی و مکانیکی به معادلات انتگرال منجر می شوند، ولی در عمل تعداد کمی از این معادلا ت را می توان به روش تحلیلی حل کرد و جواب دقیق آنها را بدست آورد. بنابراین از روش های عددی برای محاسبه جواب تقریبی آنها استفاده می کنیم. پایان نامه مشتمل بر سه فصل است که به صورت زیر مرتب شده است. در فصل اول مقدمه ای کوتاه در مورد موجک ها، معادلات انتگرال و معادلات دیفرانسیل کسری و مفاهیم...

پایان نامه :دانشگاه آزاد اسلامی - دانشگاه آزاد اسلامی واحد تهران مرکزی - دانشکده علوم پایه 1393

دراین پایان نامه روش جدیدی برای حل معادلات انتگرال کوشی نوع اول ارائه می دهیم. یک معادله انتگرال منظم شده را در نظر می گیریم سپس آنرا به فرم کانونی مناسب برای استفاده از روش تجزیه آدومیان تبدیل می کنیم و یک جواب تجزیه از معادله انتگرال منظم را بدست می آوریم و در ادامه همگرایی روش ترکیبی جدیدی را ثابت می کنیم. به عنوان پارامتر منظم میل می کند، جواب بدست آمده یک جواب تقریبی به اندازه کافی خوب برا...

پایان نامه :دانشگاه تربیت معلم - سبزوار - دانشکده علوم پایه 1389

چکیده نظریه معادلات انتگرال، یکی از مهمترین شاخه های ریاضیات کاربردی است که اصولاً اهمیت آن از لحاظ مقدار مرزی در تئوری معادلات با مشتقات جزئی است. معادلات انتگرال در خیلی از مسائل مهندسی فیزیک، شیمی و بیولوژی ظاهر می شوند و تعدادی از مسائل مهندسی و مکانیک را می توان به این نوع معادلات تبدیل کرد. در این پایان نامه، روش هایی برای حل معادلات دیفرانسیل و انتگرال و دستگاه های معادلات انتگرال فردهلم...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه مراغه - دانشکده علوم پایه 1393

یک روش عددی جدید و قوی برای معادلات انتگرال تابعی همرشتاین ارائه شده است. روش فوق روی چند مثال آزمایش و پایداری عددی و همگرایی آن به طریق ریاضی اثبات شده است.

پایان نامه :دانشگاه تربیت معلم - تهران - دانشکده علوم ریاضی و مهندسی کامپیوتر 1389

حل شمار زیادی از مسائل ریاضی- فیزیک منجر به حل معادلات انتگرال خاصی میشود؛ معادلات انتگرالی که به دلیل شبیهسازی ریاضی پدیده های طبیعی، اکثراً منفرد هستند و پیدا کردن جواب آنها به صورت تحلیلی کاری دشوار و گاهی غیر ممکن است. از اینرو بررسی عددی جواب معادلات انتگرال حائز اهمیت است. در این بین، مدلسازی ریاضی بیشتر مسائل مربوط به نظریهی ارتجاع ، نظریهی پراکندگی ذرات و نظریهی انتقال نوترونها ، به معا...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه گیلان 1390

در این پایان نامه به تعریف تعمیمی از انتگرال ریمان به نام انتگرال نخستین بازگشت می پردازیم و به طور خاص توابعی را معرفی می کنیم که به این روش انتگرال پذیر نیستند.

ژورنال: :caspian journal of mathematical sciences 0
f. mirzaee department of mathematics, faculty of science, malayer university s. fathi department of mathematics, faculty of science, malayer university

در این مقاله، یک روش عددی برای حل معادلات انتگرال همرشتاین غیرخطی، ارائه شده است. بدین منظور هسته با استفاده از روش تقریب کمترین مربعات و بر حسب پایه لژاندر- برنشتاین تقریب زده شده است. چندجمله ایهای لژاندر متعامدند و این ویژگی دقت تقریب را بهبود می بخشد. همچنین تابع مجهول به وسیله پایه برنشتاین تقریب زده شده است. ویژگی های مفید چند جمله ایهای برنشتاین به ما کمک می کند تا معادله انتگرال همرشتای...

ژورنال: :فیزیک زمین و فضا 2000
وحید ابراهیم زاده اردستانی

مسئله شرایط مرزی استوکس درمختصات بیضوی برای محاسبه ارتفاع ژئوئید به کارگرفته شده است. جهت درجه پایین ارتفاع ژئوئید با استفاده از مدل های پتانسیل کروی (ggm) بهتر و دقیق تر قابل محاسبه است. بنابراین پتانسیل آشفته به دو قسمت تقسیم می شود: 1- درجه پایین پتانسیل مرجع‘2- درجه بالاتر پتانسیل . برای محاسبه درجه پایین از مدل پتانسیل کروی (ggm) و برای درجه بالاتر از انتگرال استوکس در مختصات بیضوی استفاده...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید