نتایج جستجو برای: weak signed roman k dominating function

تعداد نتایج: 1688331  

‎‎Let $G=(V‎, ‎E)$ be a simple graph with vertex set $V$ and edge set $E$‎. ‎A {em mixed Roman dominating function} (MRDF) of $G$ is a function $f:Vcup Erightarrow {0,1,2}$ satisfying the condition that every element $xin Vcup E$ for which $f(x)=0$ is adjacent‎‎or incident to at least one element $yin Vcup E$ for which $f(y)=2$‎. ‎The weight of an‎‎MRDF $f$ is $sum _{xin Vcup E} f(x)$‎. ‎The mi...

2002
Bohdan Zelinka

The signed edge domination number of a graph is an edge variant of the signed domination number. The closed neighbourhood NG[e] of an edge e in a graph G is the set consisting of e and of all edges having a common end vertex with e. Let f be a mapping of the edge set E(G) of G into the set {−1, 1}. If ∑ x∈N [e] f(x) 1 for each e ∈ E(G), then f is called a signed edge dominating function on G. T...

Journal: :Mathematics 2021

A double Roman dominating function on a graph G=(V,E) is f:V?{0,1,2,3} with the properties that if f(u)=0, then vertex u adjacent to at least one assigned 3 or two vertices 2, and f(u)=1, 2 3. The weight of f equals w(f)=?v?Vf(v). domination number ?dR(G) G minimum G. said be ?dR(G)=3?(G), where ?(G) We obtain sharp lower bound generalized Petersen graphs P(3k,k), we construct solutions providi...

Journal: :Discrete Applied Mathematics 2009
Dirk Meierling Lutz Volkmann Stephan Zitzen

Let G be a finite and simple graph with vertex set V (G), and let f : V (G) → {−1, 1} be a two-valued function. If ∑ x∈N[v] f (x) ≥ 1 for each v ∈ V (G), where N[v] is the closed neighborhood of v, then f is a signed dominating function on G. A set {f1, f2, . . . , fd} of signed dominating functions on Gwith the property that ∑d i=1 fi(x) ≤ 1 for each x ∈ V (G), is called a signed dominating fa...

Journal: :Australasian J. Combinatorics 2008
Hosein Karami Seyed Mahmoud Sheikholeslami Abdollah Khodkar

The open neighborhood NG(e) of an edge e in a graph G is the set consisting of all edges having a common end-vertex with e and its closed neighborhood is NG[e] = NG(e) ∪ {e}. Let f be a function on E(G), the edge set of G, into the set {−1, 1}. If ∑x∈NG[e] f(x) ≥ 1 for at least a half of the edges e ∈ E(G), then f is called a signed edge majority dominating function of G. The minimum of the val...

Journal: :Discussiones Mathematicae Graph Theory 2013
Mustapha Chellali Nader Jafari Rad

A Roman dominating function (RDF) on a graphG = (V,E) is a function f : V −→ {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of an RDF is the value f(V (G)) = ∑ u∈V (G) f(u). An RDF f in a graph G is independent if no two vertices assigned positive values are adjacent. The Roman domination number γR(G)...

Journal: :Australasian J. Combinatorics 2017
Alawi Alhashim Wyatt J. Desormeaux Teresa W. Haynes

The complementary prism GG of a graph G is formed from the disjoint union of G and its complement G by adding the edges of a perfect matching between the corresponding vertices of G and G. A Roman dominating function on a graph G = (V,E) is a labeling f : V (G) → {0, 1, 2} such that every vertex with label 0 is adjacent to a vertex with label 2. The Roman domination number γR(G) ofG is the mini...

Journal: :Discussiones Mathematicae Graph Theory 2015
Abdollah Khodkar Babak Samadi Lutz Volkmann

Let G be a graph. A function f : V (G) → {−1, 1} is a signed kindependence function if the sum of its function values over any closed neighborhood is at most k − 1, where k ≥ 2. The signed k-independence number of G is the maximum weight of a signed k-independence function of G. Similarly, the signed total k-independence number of G is the maximum weight of a signed total k-independence functio...

2011
S. M. Sheikholeslami L. Volkmann

LetD = (V,A) be a finite and simple digraph. A Roman dominating function (RDF) on a digraph D is a labeling f : V (D) → {0, 1, 2} such that every vertex with label 0 has a in-neighbor with label 2. The weight of an RDF f is the value ω(f) = ∑ v∈V f(v). The Roman domination number of a digraph D, denoted by γR(D), equals the minimum weight of an RDF on D. In this paper we present some sharp boun...

Journal: :European Journal of Pure and Applied Mathematics 2023

Let k ∈ Z +. A − distance Roman dominating function (kDRDF) on G = (V, E) is a f : V → {0, 1, 2} such that for every vertex v with f(v) 0, there u f(u) 2 d(u, v) ≤ k. The global (GkDRDF) if and only its complement G. weight of the value w(f) P x∈V f(x). minimum graph called domination number denoted as γ gR(G). gR(G) Note that, 1 usual γgR(G), is, γgR(G). authors initiated this study. In paper,...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید