نتایج جستجو برای: time fractional klein gordon equation
تعداد نتایج: 2125471 فیلتر نتایج به سال:
Theorems (most notably by Hegerfeldt) prove that an initially localized particle whose time evolution is determined by a positive Hamiltonian will violate causality. We argue that this apparent paradox is resolved for a free particle described by either the Dirac equation or the Klein-Gordon equation because such a particle cannot be localized in the sense required by the theorems.
The Klein-Gordon equation of the hydrogen atom has a low-lying eigenstate, called hydrino state, with square integrable wavefunction. The corresponding spinor solution of Dirac’s equation is not square integrable. For this reason the hydrino state has been rejected in the early days of quantum mechanics as being unphysical. Maybe it is time to change opinion.
Subdiffusion in the presence of an external force field can be described in phase space by the fractional Klein-Kramers equation. In this paper, we explore the stochastic structure of this equation. Using a subordination method, we define a random process whose probability density function is a solution of the fractional Klein-Kramers equation. The structure of the introduced process agrees wit...
Theorems (most notably by Hegerfeldt) prove that an initially localized particle whose time evolution is determined by a positive Hamiltonian will violate causality. We argue that this apparent paradox is resolved for a positive energy free particle described by either the Dirac equation or the Klein-Gordon equation because such a particle cannot be localized in the sense required by the theorems.
Corresponding Author: Mohammed Al-Smadi Department of Applied Science, Ajloun College, AlBalqa Applied University, Ajloun 26816, Jordan Email: [email protected] Abstract: This analysis proposes an analytical-numerical approach for providing solutions of a class of nonlinear fractional Klein-Gordon equation subjected to appropriate initial conditions in Caputo sense by using the Fractional Red...
In this paper the quantum hydrodynamic approach for the Klein–Gordon equation (KGE) owning a perturbative self-interaction term is developed. The generalized model to non-Euclidean space–time allows for the determination of the quantum energy impulse tensor density of mesons, for the gravitational equation of quantum mechanical systems.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید