نتایج جستجو برای: stochastic optimization
تعداد نتایج: 429961 فیلتر نتایج به سال:
A stochastic version of the branch and bound method is proposed for solving stochastic global optimization problems. The method, instead of deterministic bounds, uses stochastic upper and lower estimates of the optimal value of subproblems, to guide the partitioning process. Almost sure convergence of the method is proved and random accuracy estimates derived. Methods for constructing random bo...
Colliding Bodies Optimization (CBO) is a population-based metaheuristic algorithm that complies physics laws of momentum and energy. Due to the stagnation susceptibility of CBO by premature convergence and falling into local optima, some meritorious methodologies based on Sine Cosine Algorithm and a mutation operator were considered to mitigate the shortcomings mentioned earlier. Sine Cosine Al...
The field of multi-stage stochastic programming provides a rich modelling framework to tackle a broad range of real-world decision problems. In order to numerically solve such programs once they get reasonably large the infinite-dimensional optimization problem has to be discretized. The stochastic optimization program generally consists of an optimization model and a stochastic model. In the m...
Discrete-event simulation based optimization is the process of finding the optimum design of a stochastic system when the performance measure(s) could only be estimated via simulation. Randomness in simulation outputs often challenges the correct selection of the optimum. We propose an algorithm that merges Ranking and Selection procedures with a large class of random search methods for continu...
We show that asymptotically, completely asynchronous stochastic gradient procedures achieve optimal (even to constant factors) convergence rates for the solution of convex optimization problems under nearly the same conditions required for asymptotic optimality of standard stochastic gradient procedures. Roughly, the noise inherent to the stochastic approximation scheme dominates any noise from...
In this paper, we study stochastic non-convex optimization with non-convex random functions. Recent studies on non-convex optimization revolve around establishing second-order convergence, i.e., converging to a nearly second-order optimal stationary points. However, existing results on stochastic non-convex optimization are limited, especially with a high probability second-order convergence. W...
there are many approaches for solving variety combinatorial optimization problems (np-compelete) that devided to exact solutions and approximate solutions. exact methods can only be used for very small size instances due to their expontional search space. for real-world problems, we have to employ approximate methods such as evolutionary algorithms (eas) that find a near-optimal solution in a r...
We provide an overview of two select topics in Monte Carlo simulationbased methods for stochastic optimization: problems with stochastic constraints and variance reduction techniques. While Monte Carlo simulation-based methods have been successfully used for stochastic optimization problems with deterministic constraints, there is a growing body of work on its use for problems with stochastic c...
بهینه سازی سازه های فضاکار بادرنظرگرفتن احتمال خرابی اعضاء و گره ها به کمک الگوریتم وراثتی اصلاح شده
Due to the probabilistic nature and uncertainties of structural parameters, reliability-based optimization will enable engineers to account for the safety of the structures and allow for its decision making applicability. Thus, reliability-based design will substitute deterministic rules of codes of practice. Space structures are of those types that have an exceedingly high range of applicabili...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید