Let A(ω) be the class of analytic functions of the form: f(z) = (z − ω) + ∞ ∑ k=2 ak(z − ω) defined on the open unit disk U = {z : |z| < 1} normalized with f(ω) = 0, f ′(ω)−1 = 0 and ω is an arbitrary fixed point in U. In this paper, we define a subclass of ω − α − uniform starlike and convex functions by using a more generalized form of Ruschewey derivative operator. Several properties such as...