نتایج جستجو برای: sparsity pattern recovery

تعداد نتایج: 552369  

2009
Guillaume Obozinski Martin J. Wainwright Michael I. Jordan M. I. JORDAN

In multivariate regression, a K-dimensional response vector is regressed upon a common set of p covariates, with a matrix B∗ ∈ Rp×K of regression coefficients. We study the behavior of the multivariate group Lasso, in which block regularization based on the `1/`2 norm is used for support union recovery, or recovery of the set of s rows for which B∗ is non-zero. Under high-dimensional scaling, w...

Journal: :Expert Syst. Appl. 2017
Aykut Koç Burak Bartan Erhan Gundogdu Tolga Çukur Haldun M. Özaktas

Sparse recovery aims to reconstruct signals that are sparse in a linear transform domain from a heavily underdetermined set of measurements. The success of sparse recovery relies critically on the knowledge of transform domains that give compressible representations of the signal of interest. Here we consider twoand three-dimensional images, and investigate various multi-dimensional transforms ...

2013
Afsaneh Asaei

This thesis takes place in the context of multi-microphone distant speech recognition in multiparty meetings. It addresses the fundamental problem of overlapping speech recognition in reverberant rooms. Motivated from the excellent human hearing performance on such problem, possibly resulting of sparsity of the auditory representation, our work aims at exploiting sparse component analysis in sp...

Journal: :CoRR 2015
Dongeun Lee Jaesik Choi

Random sampling in compressive sensing (CS) enables the compression of large amounts of input signals in an efficient manner, which is useful for many applications. CS reconstructs the compressed signals exactly with overwhelming probability when incoming data can be sparsely represented with a fixed number of components, which is one of the drawbacks of CS frameworks because the signal sparsit...

2007
Gilles Hennenfent Felix J. Herrmann

In this paper, we present a new discrete undersampling scheme designed to favor wavefield reconstruction by sparsity-promoting inversion with transform elements that are localized in the Fourier domain. Our work is motivated by empirical observations in the seismic community, corroborated by recent results from compressive sampling, which indicate favorable (wavefield) reconstructions from rand...

2016
Yair Rivenson Yichen Wu Hongda Wang Yibo Zhang Alborz Feizi Aydogan Ozcan

High-resolution imaging of densely connected samples such as pathology slides using digital in-line holographic microscopy requires the acquisition of several holograms, e.g., at >6-8 different sample-to-sensor distances, to achieve robust phase recovery and coherent imaging of specimen. Reducing the number of these holographic measurements would normally result in reconstruction artifacts and ...

2017
Spyridon Chavlis Panagiotis C. Petrantonakis Panayiota Poirazi

The hippocampus plays a key role in pattern separation, the process of transforming similar incoming information to highly dissimilar, nonverlapping representations. Sparse firing granule cells (GCs) in the dentate gyrus (DG) have been proposed to undertake this computation, but little is known about which of their properties influence pattern separation. Dendritic atrophy has been reported in ...

2008
Felix J. Herrmann Peyman Moghaddam Christiaan C. Stolk Zuowei Shen

A nonlinear singularity-preserving solution to seismic image recovery with sparseness and continuity constraints is proposed. We observe that curvelets, as a directional frame expansion, lead to sparsity of seismic images and exhibit invariance under the normal operator of the linearized imaging problem. Based on this observation we derive a method for stable recovery of the migration amplitude...

Journal: :CoRR 2011
Zhilin Zhang Bhaskar D. Rao

A trend in compressed sensing (CS) is to exploit structure for improved reconstruction performance. In the basic CS model (i.e. the single measurement vector model), exploiting the clustering structure among nonzero elements in the solution vector has drawn much attention, and many algorithms have been proposed such as group Lasso (Yuan & Lin, 2006). However, few algorithms explicitly consider ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید