نتایج جستجو برای: skew laplacian energy
تعداد نتایج: 687143 فیلتر نتایج به سال:
In this work, we study the stability of Hopf vector fields on Lorentzian Berger spheres as critical points of the energy, the volume and the generalized energy. In order to do so, we construct a family of vector fields using the simultaneous eigenfunctions of the Laplacian and of the vertical Laplacian of the sphere. The Hessians of the functionals are negative when they act on these particular...
The Laplacian energy of a graph sums up the absolute values of the differences of average degree and eigenvalues of the Laplace matrix of the graph. This spectral graph parameter is upper bounded by the energy obtained when replacing the eigenvalues with the conjugate degree sequence of the graph, in which the i-th number counts the nodes having degree at least i. Because the sequences of eigen...
This is an expository paper which includes several topics related to the Dirichlet form analysis on the Sierpiński gasket. We discuss the analog of the classical Laplacian; approximation by harmonic functions that gives a notion of a gradient; directional energies and an equipartition of energy; analysis with respect to the energy measure; harmonic coordinates; and non self-similar Dirichlet fo...
The centrality of vertices has been a key issue in network analysis. For unweighted networks where edges are just present or absent and have no weight attached, many centrality measures have been presented, such as degree, betweenness, closeness, eigenvector and subgraph centrality. There has been a growing need to design centrality measures for weighted networks, because weighted networks wher...
Two digraphs of same order are said to be skew-equienergetic if their skew energies are equal. One of the open problems proposed by Li and Lian was to construct non-cospectral skew-equienergetic digraphs on n vertices. Recently this problem was solved by Ramane et al. In this paper, we give some new methods to construct new skew-equienergetic digraphs.
In this paper, we consider a flexible skew-generalized normal distribution. This distribution is denoted by $FSGN(/lambda _1, /lambda _2 /theta)$. It contains the normal, skew-normal (Azzalini, 1985), skew generalized normal (Arellano-Valle et al., 2004) and skew flexible-normal (Gomez et al., 2011) distributions as special cases. Some important properties of this distribution are establi...
For a ring endomorphism $alpha$ and an $alpha$-derivation $delta$, we introduce a concept, so called skew $pi$-Armendariz ring, that is a generalization of both $pi$-Armendariz rings, and $(alpha,delta)$-compatible skew Armendariz rings. We first observe the basic properties of skew $pi$-Armendariz rings, and extend the class of skew $pi$-Armendariz rings through various ring extensions. We nex...
Copyright q 2012 X. Pai and S. Liu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Let Φ G, λ det λIn − L G ∑n k 0 −1 ck G λn−k be the characteristic polynomial of the Laplacian matrix of a graph G of order n. In this paper, we g...
Nowadays there has been an increasing interest in more flexible distributions like skew distributions that can represent observed behavior more closely. These distributions are often used in the medical and behavioral sciences for real-valued random variables whose distributions are not symmetric. Because high Application of skew distributions, in this paper after a brief review of famous skew ...
For a simple connected graph G of order n, having Laplacian eigenvalues μ1, μ2, . . . , μn−1, μn = 0, the Laplacian–energy–like invariant (LEL) and the Kirchhoff index (Kf) are defined as LEL(G) = ∑n−1 i=1 √ μi and Kf(G) = n ∑n−1 i=1 1 μi , respectively. In this paper, LEL and Kf are compared, and sufficient conditions for the inequality Kf(G) < LEL(G) are established.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید