نتایج جستجو برای: signed roman edge k dominating function
تعداد نتایج: 1662242 فیلتر نتایج به سال:
A function f : V (G) → {0, 1, 2} is a Roman dominating function for a graph G = (V,E) if for every vertex v with f(v) = 0, there exists a vertex w ∈ N(v) with f(w) = 2. Emperor Constantine had the requirement that an army or legion could be sent from its home to defend a neighboring location only if there was a second army which would stay and protect the home. Thus, there are two types of armi...
A set D of vertices in a graph G is a distance-k dominating set if every vertex of G either is in D or is within distance k of at least one vertex in D. A distance-k dominating set of G of minimum cardinality is called a minimum distance-k dominating set of G. For any graph G and for a subset F of the edge set of G the set F is an edge dominating set of G if every edge of G either is in D or is...
A Roman dominating function (RDF) on a graph G = (V,E) is a function f : V → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of f is w(f) = ∑ v∈V f(v). The Roman domination number is the minimum weight of an RDF in G. It is known that for every graph G, the Roman domination number of G is bounded above...
We conjecture that every signed graph of unbalanced girth 2g, whose underlying graph is bipartite and planar, admits a homomorphism to the signed projective cube of dimension 2g−1. Our main result is to show that for a given g, this conjecture is equivalent to the corresponding case (k = 2g) of a conjecture of Seymour claiming that every planar k-regular multigraph with no odd edge-cut of less ...
Let $kgeq 1$ be an integer, and let $G$ be a graph. A {it$k$-rainbow dominating function} (or a {it $k$-RDF}) of $G$ is afunction $f$ from the vertex set $V(G)$ to the family of all subsetsof ${1,2,ldots ,k}$ such that for every $vin V(G)$ with$f(v)=emptyset $, the condition $bigcup_{uinN_{G}(v)}f(u)={1,2,ldots,k}$ is fulfilled, where $N_{G}(v)$ isthe open neighborhood of $v$. The {it weight} o...
A function f : V (G) → {0, 1, 2} is a Roman dominating function if for every vertex with f(v) = 0, there exists a vertex w ∈ N(v) with f(w) = 2. We introduce two fractional Roman domination parameters, γR ◦ f and γRf , from relaxations of two equivalent integer programming formulations of Roman domination (the former using open neighborhoods and the later using closed neighborhoods in the Roman...
Let G be a graph with vertex set V (G). A function f : V (G) → {−1, 1} is a signed dominating function of G if, for each vertex of G, the sum of the values of its neighbors and itself is positive. The signed domination number of a graph G, denoted γs(G), is the minimum value of ∑ v∈V (G) f(v) over all the signed dominating functions f of G. The signed reinforcement number of G, denoted Rs(G), i...
For any integer , a minus k-dominating function is afunction f : V (G) {-1,0, 1} satisfying w) for every vertex v, where N(v) ={u V(G) | uv E(G)} and N[v] =N(v)cup {v}. The minimum of the values of v), taken over all minusk-dominating functions f, is called the minus k-dominationnumber and is denoted by $gamma_k^-(G)$ . In this paper, we introduce the study of minu...
A signed k-partite graph (signed multipartite graph) is a k-partite graph in which each edge is assigned a positive or a negative sign. If G(V1, V2, · · · , Vk) is a signed k-partite graph with Vi = {vi1, vi2, · · · , vini}, 1 ≤ i ≤ k, the signed degree of vij is sdeg(vij) = dij = d + ij − d − ij , where 1 ≤ i ≤ k, 1 ≤ j ≤ ni and d + ij(d − ij) is the number of positive (negative) edges inciden...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید