نتایج جستجو برای: self organizing feature map
تعداد نتایج: 937960 فیلتر نتایج به سال:
Handwritten signatures are the most natural way of authenticating a person’s identity. An offline signature verification system generally consists of four components: data acquisition, preprocessing, feature extraction, recognition and verification. This paper presents a method for verifying handwritten signature by using NN architecture. In proposed methods the multi-layer perceptron (MLP), mo...
We propose a two-stage hierarchical arti®cial neural network for the segmentation of color images based on the Kohonen self-organizing map (SOM). The ®rst stage of the network employs a ®xed-size two-dimensional feature map that captures the dominant colors of an image in an unsupervised mode. The second stage combines a variable-sized one-dimensional feature map and color merging to control th...
pucker grade is one of the most important quality parameters in garments manufacturing industry. At present, seam pucker is usually evaluated by human inspectors, which is subjective, unreliable and time-consuming. Instead of subjective evaluation, this paper presents an objective method by using image analysis and pattern recognition. The evaluation system consists of image acquisition, image ...
information from multidimensional primary signals, and to represent it as a location, say, in a two-dimensional network. Although this i s already a step towards generalization and symbolism, it must be admitted that the extraction of features from geometrically or physically relatable data elements i s still a very concrete task, in principle at least. Theoperation of the brain at the higher l...
We present a study of a novel variant of the Self-Organizing Map (SOM) called the Associative SelfOrganizing Map (A-SOM). The A-SOM is similar to the SOM and thus develops a representation of its input space, but in addition it also learns to associate its activity with the activity of one or several external SOMs. The A-SOM has relevance in e.g. the modelling of expectations in one modality du...
Self-Organizing map (SOM) is a widely used tool to find clustering and also to visualize high dimensional data. Several spherical SOMs have been proposed to create a more accurate representation of the data by removing the “border effect”. In this paper, we compare several spherical lattices for the purpose of implementation of a SOM. We then introduce a 2D rectangular grid data structure for r...
We present a method for an automated quality control of textile seams, which is aimed to establish a standardized quality measure and to lower costs in manufacturing. The system consists of a suitable image acquisition setup, an algorithm for locating the seam, a feature extraction stage and a neural network of the self-organizing map type for feature classification. A procedure to select an op...
Image classification is a challenging problem of computer vision. Conventional image classification methods use flat image features with fixed dimensions, which are extracted from a whole image. Such features are computationally effective but are crude representation of the image content. This paper proposes a new image classification approach through a tree-structured feature set. In this appr...
It has been proved that in one-dimensional cases, the weights of Kohonen’s self-organizing maps (SOM) will become ordered with probability 1; once the weights are ordered, they cannot become disordered in future training. It is difcult to analyze Kohonen’s SOMs in multidimensional cases; however, it has been conjectured that similar results seem to be obtainable in multidimensional cases. In t...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید