نتایج جستجو برای: second submodule

تعداد نتایج: 616184  

Journal: :journal of algebraic systems 2015
m. baziar

in this article, we give several generalizations of the concept of annihilating ideal graph over a commutative ring with identity to modules. weobserve that over a commutative ring $r$, $bbb{ag}_*(_rm)$ isconnected and diam$bbb{ag}_*(_rm)leq 3$. moreover, if $bbb{ag}_*(_rm)$ contains a cycle, then $mbox{gr}bbb{ag}_*(_rm)leq 4$. also for an $r$-module $m$ with$bbb{a}_*(m)neq s(m)setminus {0}$, $...

2001
Géza Takách George Hutchinson

An elementary proof is given for Hutchinson’s duality theorem, which states that if a lattice identity λ holds in all submodule lattices of modules over a ring R with unit element then so does the dual of λ.

Journal: :Electronics Science Technology and Application 2021

Journal: :bulletin of the iranian mathematical society 0
r. nekooei department of pure‎ ‎mathematics‎, ‎faculty of mathematics and computer, shahid bahonar‎ ‎university‎ ‎of kerman‎, ‎p.o. box 76169133, kerman‎, ‎iran. f. mirzaei department of pure‎ ‎mathematics‎, ‎faculty of mathematics and computer, shahid bahonar‎ ‎university‎ ‎of kerman‎, ‎p.o. box 76169133, kerman‎, ‎iran.

in this paper we characterize the radical of an arbitrary‎ ‎submodule $n$ of a finitely generated free module $f$ over a‎ ‎commutatitve ring $r$ with identity‎. ‎also we study submodules of‎ ‎$f$ which satisfy the radical formula‎. ‎finally we derive‎ ‎necessary and sufficient conditions for $r$ to be a‎ ‎pr$ddot{mbox{u}}$fer domain‎, ‎in terms of the radical of a‎ ‎cyclic submodule in $rbigopl...

In this paper we introduce a new class of modules which is closely related to the class of Noetherian modules. Let $R$ be a commutative ring with identity and let $M$ be an $R$-module such that $Nil(M)$ is a divided prime submodule of $M$. $M$ is called a Nonnil-Noetherian $R$-module if every nonnil submodule of $M$ is finitely generated. We prove that many of the properties of Noetherian modul...

Journal: :J. Symb. Comput. 2005
Ruth L. Auerbach

This paper extends the theory of the Gröbner fan and Gröbner walk for ideals in polynomial rings to the case of submodules of free modules over a polynomial ring. The Gröbner fan for a submodule creates a correspondence between a pair consisting of a cone in the fan and a point in the support of the cone and a pair consisting of a leading monomial submodule (or equivalently, a reduced marked Gr...

2000
J. Drissi

This paper addresses the problem of designing a submodule of a given system of communicating timed I/O automata. The problem may be formulated mathematically by the equation (C||X)rA under the constraint IX=In, where C represents the specification of the known part of the system, called the context, A represents the specification of the whole system, X represents the specification of the submod...

2006
Daniel Murfet

1 Basic Properties Definition 1. Let X be a scheme. We denote the category of sheaves of OX -modules by OXMod or Mod(X). The full subcategories of qausi-coherent and coherent modules are denoted by Qco(X) and Coh(X) respectively. Mod(X) is a grothendieck abelian category, and it follows from (AC,Lemma 39) and (H, II 5.7) that Qco(X) is an abelian subcategory of Mod(X). If X is noetherian, then ...

2009

If N is a submodule of the R-module M , and a ∈ R, let λa : M/N → M/N be multiplication by a. We say that N is a primary submodule of M if N is proper and for every a, λa is either injective or nilpotent. Injectivity means that for all x ∈ M , we have ax ∈ N ⇒ x ∈ N . Nilpotence means that for some positive integer n, aM ⊆ N , that is, a belongs to the annihilator of M/N , denoted by ann(M/N). ...

Journal: :journal of algebraic systems 2015
somayeh karimzadeh reza nekooei

in this paper, we give a generalization of the integral dependence from rings to modules. we study the stability of the integral closure with respect to various module theoretic constructions. moreover, we introduce the notion of integral extension of a module and prove the lying over, going up and going down theorems for modules.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->