نتایج جستجو برای: scale optimization
تعداد نتایج: 876181 فیلتر نتایج به سال:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
Abs t rac t We introduce some methods for constrained nonlinear programming that are widely used in practice and that are known under the names SQP for sequential quadratic programming and SCP for sequential convex programming. In both cases, convex subproblems are formulated, in the first case a quadratic programming problem, in the second case a separable nonlinear program in inverse variable...
Evolutionary algorithms (EAs) have been applied with success to many numerical and combinatorial optimization problems in recent years. However, they often lose their effectiveness and advantages when applied to large and complex problems, e.g., those with high dimensions. Although cooperative coevolution has been proposed as a promising framework for tackling high-dimensional optimization prob...
The search for finding the local minimization in unconstrained optimization problems and a fixed point of the gradient system of ordinary differential equations are two close problems. Limited-memory algorithms are widely used to solve large-scale problems, while Rang Kuta's methods are also used to solve numerical differential equations. In this paper, using the concept of sub-space method and...
We present a method for vision-based recovery of threedimensional structures through simultaneous model reconstruction and camera position tracking from monocular images. Our approach does not rely on robust feature detecting schemes (such as SIFT, KLT etc.), but works directly on intensity values in the captured images. Thus, it is well-suited for reconstruction of surfaces that exhibit only m...
This paper provides a review and commentary on the past, present, and future of numerical optimization algorithms in the context of machine learning applications. Through case studies on text classification and the training of deep neural networks, we discuss how optimization problems arise in machine learning and what makes them challenging. A major theme of our study is that large-scale machi...
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstoLorg/aboutiterms.html. JSTOR's Terms and Conditions ofDse provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your persona...
The particle swarm optimization (PSO) algorithm, in which individuals collaborate with their interacted neighbors like bird flocking to search for the optima, has been successfully applied in a wide range of fields pertaining to searching and convergence. Here we employ the scale-free network to represent the inter-individual interactions in the population, named SF-PSO. In contrast to the trad...
Previously formulated scaling laws relating acoustic waveforms in boreholes to frequency, tool size and borehole diameter were investigated by repeated logging of the same test interval with different frequencies, and by logging adjacent boreholes of different diameters with the same logging system. Acoustic source frequency bands were centered on approximately 15, 20 and 34 kilohertz. Borehole...
The development of efficient parallel algorithms for large scale wildfire simulations is a challenging research problem because the factors that determine wildfire behavior are complex. These factors make static parallel algorithms inefficient, especially when large number of processors is used because we cannot predict accurately the propagation of the fire and its computational requirements a...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید