نتایج جستجو برای: sasakian space
تعداد نتایج: 494804 فیلتر نتایج به سال:
We show that the natural S-bundle over a projective special Kähler manifold carries the geometry of a proper affine hypersphere endowed with a Sasakian structure. The construction generalizes the geometry of the Hopf-fibration S −→ CPn in the context of projective special Kähler manifolds. As an application we have that a natural circle bundle over the Kuranishi moduli space of a Calabi-Yau thr...
Some results on the properties of T -flat, quasiT -flat, T -flat, T -flat, T -semi-symmetric, T Ricci recurrent and T - -recurrent LP-Sasakian manifolds are obtained. It is also proved that an LP-Sasakian manifold satisfying the condition T . 0 S is an -Einstein manifold. MSC 2000. 53C15, 53C25, 53C50, 53D15.
A Sasakian structure S=(;;;;g) on a manifold M is called positive if its basic rst Chern class c 1 (F) can be represented by a positive (1;1)-form with respect to its transverse holomorphic CR-structure. We prove a theorem that says that every positive Sasakian structure can be deformed to a Sasakian structure whose metric has positive Ricci curvature. This allows us by example to give a comple...
The object of this paper is to study $(epsilon)$-Lorentzian para-Sasakian manifolds. Some typical identities for the curvature tensor and the Ricci tensor of $(epsilon)$-Lorentzian para-Sasakian manifold are investigated. Further, we study globally $phi$-Ricci symmetric and weakly $phi$-Ricci symmetric $(epsilon)$-Lorentzian para-Sasakian manifolds and obtain interesting results.
In this note I study the Sasakian geometry associated to the standard CR structure on the Heisenberg group, and prove that the Sasaki cone coincides with the set of extremal Sasakian structures. Moreover, the scalar curvature of these extremal metrics is constant if and only if the metric has Φsectional curvature −3. I also briefly discuss some relations with the well-know sub-Riemannian geomet...
In this paper, we study the geometry of half lightlike submanifolds of an indefinite Sasakian manifold. There are several different types of half lightlike submanifolds of an indefinite Sasakian manifold according to the form of its structure vector field. We study two types of them here: tangential and ascreen half lightlike submanifolds.
We prove that a Sasakian 3-manifold admitting a non-trivial solution to the Einstein-Dirac equation has necessarily constant scalar curvature. In the case when this scalar curvature is non-zero, their classi cation follows then from a result by Th. Friedrich and E.C. Kim. We also prove that a scalarat Sasakian 3-manifold admits no local Einstein spinors.
ABS’I’RACI’. Pseudo-Sasakian manifolds M(U,E,,,g) endowed wlth a contact conformal connection are defined. It is proved tlat sucl manifolds are space forms M(K),K < O, and somo remarkable properttos of the 1,ie algebra of infinitesimal transformatton. of the principal vector feld U on M are discussed. Properties of tle leaves of a co-tsotroptc foliation on I’! and properties of the tangent bund...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید