نتایج جستجو برای: ricci curvature
تعداد نتایج: 44758 فیلتر نتایج به سال:
Harmonic maps are natural generalizations of harmonic functions and are critical points of the energy functional defined on the space of maps between two Riemannian manifolds. The Liouville type properties for harmonic maps have been studied extensively in the past years (Cf. [Ch], [C], [EL1], [EL2], [ES], [H], [HJW], [J], [SY], [S], [Y1], etc.). In 1975, Yau [Y1] proved that any harmonic funct...
we classify the paracontact riemannian manifolds that their rieman-nian curvature satisfies in the certain condition and we show that thisclassification is hold for the special cases semi-symmetric and locally sym-metric spaces. finally we study paracontact riemannian manifolds satis-fying r(x, ξ).s = 0, where s is the ricci tensor.
We discuss the Sasakian geometry of odd dimensional homotopy spheres. In particular, we give a completely new proof of the existence of metrics of positive Ricci curvature on exotic spheres that can be realized as the boundary of a parallelizable manifold. Furthermore, it is shown that on such homotopy spheres Σ the moduli space of Sasakian structures has infinitely many positive components det...
In this paper we first obtain the non-Riemannian Randers metrics of Douglas type on two-step homogeneous nilmanifolds of dimension five. Then we explicitly give the flag curvature formulae and the $S$-curvature formulae for the Randers metrics of Douglas type on these spaces. Moreover, we prove that the only simply connected five-dimensional two-step homogeneous Randers nilmanifolds of D...
Complete noncompact Riemannian manifolds with nonnegative sectional curvature arise naturally in the Ricci flow when one takes the limits of dilations about a singularity of a solution of the Ricci flow on a compact 3-manifold [ H-95a]. To analyze the singularities in the Ricci flow one needs to understand these manifolds in depth. There are three invariants, asymptotic scalar curvature ratio, ...
We describe some new ideas and techniques introducedto study spaces with a given lower Ricci curvature bound, and discuss a number of recent results about such spaces.
We show the properties of the blowup limits of Kähler Ricci flow solutions on Fano surfaces if Riemannian curvature is unbounded. As an application, on every toric Fano surface, we prove that Kähler Ricci flow converges to a Kähler Ricci soliton metric if the initial metric has toric symmetry. Therefore we give a new Ricci flow proof of existence of Kähler Ricci soliton metrics on toric surfaces.
The combinatorial Ricci curvature of Forman, which is defined at the edges of a CW complex, and which makes use of only the face relations of the cells in the complex, does not satisfy an analog of the Gauss-Bonnet Theorem, and does not behave analogously to smooth surfaces with respect to negative curvature. We extend this curvature to vertices and faces in such a way that the problems with co...
This article is a report summarizing recent progress in the geometry of negative Ricci and scalar curvature. It describes the range of general existence results of such metrics on manifolds of dimension ≥ 3. Moreover it explains flexibility and approximation theorems for these curvature conditions leading to unexpected effects. For instance, we find that “modulo homotopy” (in a specified sense)...
Conformal geometry is in the core of pure mathematics. It is more flexible than Riemaniann metric but more rigid than topology. Conformal geometric methods have played important roles in engineering fields. This work introduces a theoretically rigorous and practically efficient method for computing Riemannian metrics with prescribed Gaussian curvatures on discrete surfaces – discrete surface Ri...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید